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PREFACE TO THE FOURTH EDITION 

APART from the provision of an index of names, the main changes in 
this edition are in the Notes at the end of each chapter. These have 
been revised to include references to results published since the third 
edition went to press and to correct omissions. Therc are simpler 
proofs of Theorems 234, 352, and 357 and a new Theorem 272. The 
Postscript to the third edition now takes its proper place as part of 
Chapter XX. 1 am indebted to several correspondents who suggested 
improvements and corrections. 

1 have to thank Dr. Ponting for again reading the proofs and Mrs. 
V. N. R. Milne for compiling the index of names. 

E. M. W. 

ABERDEEN 

July 1959 



PREFACE TO THE FIRST EDITION 

THIS book has developed gradually from lectures delivered in a number 
of universities during the last ten years, and, like many books which 
have grown out of lectures, it has no very definite plan. 

It is not in any sense (as an expert cari see by reading the table of 
contents) a systematic treatise on the theory of numbers. It does not 
even contain a fully reasoned account of any one side of that many- 
sided theory, but is an introduction, or a series of introductions, to 
almost a11 of these sides in turn. We say something about each of a 
number of subjects which are not usually combined in a single volume, 
and about some which are not always regarded as forming part of the 
theory of numbers at all. Thus Chs. XII-XV belong to the ‘algebraic’ 
theory of numbers, Chs. XIX-XXI to the ‘additive’, and Ch. XXII 
to the ‘analytic’ theories; while Chs. III, XI, XXIII, and XXIV deal 
with matters usually classified under the headings of ‘geometry of 
numbers’ or ‘Diophantine approximation’. There is plenty of variety 
in our programme, but very little depth; it is impossible, in 400 pages, 
to treat any of these many topics at a11 profoundly. 

There are large gaps in the book which Will be noticed at once by any 
expert. The most conspicuous is the omission of any account of the 
theory of quadratic forms. This theory has been developed more 
systematically than any other part of the theory of numbers, and there 
are good discussions of it in easily accessible books. We had to omit 
something, and this seemed to us the part of the theory where we had 
the least to add to existing accounts. 

We have often allowed our persona1 interests to decide our pro- 
gramme, and have selected subjects less because of their importance 
(though most of them are important enough) than because we found 
them congenial and because other writers have left us something to 
say. Our first aim has been to Write an interesting book, and one unlike 
other books. We may have succeeded at the price of too much eccen- 
tricity, or w(’ may have failed; but we cari hardly have failed com- 
pletely, the subject-matter being SO attractive that only extravagant 
incompetence could make it dull. 

The book is written for mathematicians, but it does .not demand any 
great mathematical knowledge or technique. In the first eighteen 
chapters we assume nothing that is not commonly taught in schools, 
and any intelligent university student should tind them comparatively 
easy reading. The last six are more difficult, and in them we presuppose 



PREFACE vii 

a little more, but nothing beyond the content of the simpler. university 
courses. 

The title is the same as that of a very well-known book by Professor 
L. E. Dickson (with which ours has little in common). We proposed 
at one time to change it to An introduction to arithmetic, a more novel 
and in some ways a more appropriate title; but it was pointed out that 
this might lead to misunderstandings about the content of the book. 

A number of friends have helped us in the preparation of the book. 
Dr. H. Heilbronn has read a11 of it both in manuscript and in print, 
and his criticisms and suggestions have led to many very substantial 
improvements, the most important of which are acknowledged in the 
text. Dr. H. S. A. Potter and Dr. S. Wylie have read the proofs and 
helped us to remove many errors and obscurities. They have also 
checked most of the references to the literature in the notes at the ends 
of the chapters. Dr. H. Davenport and Dr. R. Rado have also read 
parts of the book, and in particular the last chapter, which, after their 
suggestions and Dr. Heilbronn’s, bears very little resemblance to the 
original draft. 

We have borrowed freely from the other books which are catalogued 
on pp. 414-15, and especially from those of Landau and Perron. TO 
Landau in particular we, in common with a11 serious students of the 
theory of numbers, owe a debt which we could hardly overstate. 

G. H. H. 
OXFORD E. M. W. 

August 1938 



REMARKS ON NOTATION 

We borrow four symbols from forma1 logic, viz. 

-+, s, 3, E. 

+ is to be read as ‘implies’. Thus 

ZIm+Zjn (P. 2) 
means ‘ * ‘1 is a divisor of WL” implies “1 is a divisor of n” ‘, or, what is 
the same thing, ‘if 1 divides m then 1 divides n’; and 

b la. clb+clu (P. 1) 
means ‘if b divides a and c divides b then c divides a’. 

s is to be read ‘is equivalent to’. Thus 

m 1 ku-ku’ F m, 1 a-a’ (P* 51) 

means that the assertions ‘m divides ka-ka’ ’ and ‘m, divides a-a’ ’ 
are equivalent; either implies the other. 

These two symbols must be distinguished carefully from -f (tends to) 
and = (is congruent to). There cari hardly be any misunderstanding, 
since + and G are always relations between propositions. 

3 is to be read as ‘there is an’. Thus 

~l.l<l<m.l~m (P. 2) 
means ‘there is an 1 such that (i) 1 < 1 < m and (ii) 1 divides m’. 

E is the relation of a member of a class to the class. Thus 

mES. neS-*(mfn)cS (P. 19) 

means ‘if m and n are members of S then m+n and m-n are members 
of S’. 

A star affixed to the number of a theorem (e.g. Theorem 15”) means 
that the proof of the theorem is too difficult to be included in the book. 
It is not affixed to theorems which are not proved but may be proved 
by arguments similar to those used in the text. 
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THE SERIES

1.1. Divisibility of integers.
‘) 0

1

OF PRIMES (1)

The numbers
. . . . -c>,  -/a, -1, 0, 1, 2 >...

are called  the rational  integers, or  simply the integers;  the numbers

0, 1, 2, 3 ,...
the non-negatiee integers; and the numbers

1, 2, 3,...
the positive integers. The positive integers form  the primary subject-
matter of arithmetic, but it is often essential to regard them as a sub-
class of the integers or of some larger class of numbers.

In what follows the letters
a, b,..., n,  P,...,  x,  y,...

Will  usually denote integers, which Will  sometimes, but not always, be
subject to further restrictions, such  as to be positive or non-negative.
We shall often use the word ‘number’ as meaning ‘integer’ (or ‘positive
integer’, etc.), when it is clear from the context that we are considering
only numbers of this particular class.

An integer a is said to be divisible by another integer b, not 0, if
there is a third integer c such  that

a = bc.
If a and b are positive, c is necessarily positive. We express the fact
that a is divisible by b, or b is a divisor of a, by

b la.
Thus 11% ala;
and b j 0 for every b but 0. We shall also sometimes use

bXa
to express the contrary of b 1 a. It is plain that

bja. clb  + cla,
bla + bclac

if c # 0, and cla ;cjb  + cjmafnb
for a11 integral m and n.

1.2. prime numbers. In this section and until 5 2.9 the numbers
considered are generally positive integers.? Among the positive integers

t There are occasiona  exceptions, &S in ff  1.7, where e z is the exponential  function of
andysis.

5591 B



2 THE SERIES OF PRIMES [Chap. 1

there is a sub-class of peculiar importance, the class  of primes. A num-
ber p is said to be prime if

(9 p > 1,
(ii) p has no positive divisors except 1 and p.

For example, 37 is a prime. It is important to observe that 1 is not

reckoned as a prime. In this a;d  the next chapter we reserve the letter
p for primes.?

A number greater than 1  and not prime is called composite.
Our first theorem is
THEOREM 1. Every positive integer, except 1, is a product  of primes.
Either n.  is prime, when there is nothing to prove, or n has divisors

between 1 and n. If m is the least of these divisors, m is prime; for
otherwise

31.1<l<m.Z[m;

and Zlm + Zln,
which contradicts the definition of m.

Hence n is prime or divisible by a prime less than n, say  p,, in which
case

n = plnl, 1 < n,  < n.

Here either n,  is prime, in which case the proof  is completed, or it is
divisible by a prime p, less than n,,  in which case

12  =  Pl%  =  1)11)2n23 1  <  n2  <  n,  <  n .

Repeating the argument, we obtain a sequence  of decreasing numbers
n, nl  )...)  nk-l~~~~7 a11 greater than 1, for each  of which the same  alterna-
tive presents  itself. Sooner or later we must accept the first alternative,
that nkml  is a prime, say  pk, and then
(12.1) n = ?t%P2  *.*Pk*

Thus 666 = 2.3.3.37.

If ab ==  n, then a and b cannot both exceed zin.  Hence any  composite
n is divisible by a prime p which does not exceed lin.

The primes in (1.2.1) are not necessarily distinct, nor arranged in
any  particular order. If we arrange them in increasing order, associate
sets of equal primes into single factors, and change the notation appro-
priately, we obtain
(1.2.2) n = p;lpFjz  . ..pp (a, > 0,  a2  > 0,  . . . . p1 < p2 < . ..).

We then say  that n is expressed in standard form.
t It would be inconvenient  to bave to observe this convention rigidly throughout

the book, and we often depart from it. In Ch. IX, for exemple, we use p/p for a typical
rational  fraction, and p is not usually prime. But p is the ‘natursl’  letter for a prime,
and  wc  give it preference  when we cari  conveniently.



1.3 (2-3)] THE SERIES OF PRIMES 3

1.3. Statement of the fundamental theorem of arithmetic.
There is nothing in the proof  of Theorem 1 to show that (1.2.2) is a
unique expression of n, or, what is the same  thing, that (1.2.1) is unique
except for possible rearrangement of the factors; but consideratian of
special  cases at once suggests that this is true.
THEOREM 2 (THE FUNDAMENTAL THEOREM OF ARITHMETIC). The

standard form  of n is unique; apart  from  rearrangement of factors, n cari  be
expressed as a product of primes in one  way only.

Theorem 2 is the foundation of systematic arithmetic, but we shall
not use it in t,his  chapter,  and defer the proof  to $ 2.10. It is however
convenient to prove at once that it is a corollary of the simpler theorem
which follows.
THEOREM 3 (EUCLID'S FIRST THEOREM). If p is prime, and plab,

then p j a or p 1 b.
We  take this theorem for granted for the moment and deduce

Theorem 2. The proof  of Theorem 2 is then reduced to that of Theorem
3, which is given in 3 2.10.

It is an obvious corollary of Theorem 3 that
pjabc...l + p~aorplborpIc...orpjl,

and in particular that, if a, b ,..., 1 are primes, then p is one  of a, b ,...,  1.
Suppose now that

n = pflpT..  . pp ,= pi1  q$. . .Qj,
each  product being a product of primes in standard form. Then
pi ] qil...qfi  for every i, SO that every p is a q; and similarly every q
is a p. Hence  k = j and, since both sets are arranged in increasing
order, pi = pi for every i.

If ai > b,,  and we divide by pfi, we obtain
p~l...py~i . ..pp  = p$..pF!;p:$...pp.

The left-hand side  is divisible by pi, while the right-hand side  is not;
a contradiction. Similarly bi  > ai yields a contradiction. It follows
that ai = b,,  and this completes the proof  of Theorem 2.

It Will  now be obvious why 1 should not be counted as a prime. If
it were, Theorem 2 would be false,  since we could insert  any  number
of unit factors.

1.4. The sequence  of primes. The first primes are

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53 >...  .
It is easy to const,ruct  a table of primes, up to a moderate limit AV, by a
procedure  known as the ‘sieve  of Eratosthenes’. We  have seen  that
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if n < N, and n is not prime, then n must be divisible by a prime not
greater than 1/N.  We now Write  down the numbers

2, 3, 4, 5, 6 >...>  N

and strike out successively

(i) 4, 6, 8, 10 ,..., i.e. 22 and then every even number,
(ii) 9, 15, 21, 27 ,..., ï.e. 32 and then every multiple of 3 not yet struok

out  >
(iii) 25, 35, 55, 65 ,..., i.e. 52,  the square of the next remaining number

after 3, and then every multiple of 5 not yet struck out,...  .

We continue the process until the next remaining number, after that
whose multiples were cancelled last, is greater than 1/N.  The numbers
which remain are primes. Al1 the present tables of primes have been
constructed by modifications of this procedure.

The tables indicate that the series  of primes is infinite. They are
complete up to 11,000,000;  the total number of primes below 10 million
is 664,579; and the number between 9,900,OOO and 10,000,000  is 6,134.
The total number of primes below 1,000,000,000  is 50,847,478;  these
primes are not known individually. A number of very large primes,
mostly of the form 2P-1 (see the note at the end of the chapter), are
also  known ; the largest found SO far has nearly 700 digits.

These data suggest the theorem

THEOREM ~(EUCLID'S SECOND THEOREM). The numberofprimes  is
in&=zite.

We shall prove this in $ 2.1.
The ‘average’ distribution of the primes is very regular; its density

shows a steady but slow decrease. The numbers of primes  in the first
five blocks of 1,000 numbers are

168, 135, 127, 120, 119,

and those in the last five blocks  of 1,000 below 10,000,000  are

62, 58, 67, 64, 53.

The last 53 primes are divided into sets of

5 , 4, 7, 4 , 6, 3, 6, 4, 5, 9

in the ten hundreds of the thousand.
On the other hand the distribution of the primes in detail is extremely

irregular.
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In the first place, the tables show at intervals long blocks of com-
posite numbers. Thus the prime 370,261 is followed by 111 composite
numbers. It is easy to see that these long blocks must occur. Suppose
that

2, 3, 5,...,  P

are the primes up to p. Then a11 numbers up to p are divisible by one
of these primes, and therefore, if

2.3.5...p  = q,
a11 of the p- 1 numbers

a+%  q+%  a+%...,  qS1,

are composite. If Theorem 4 is truc,  then p cari  be as large as we please;
and otherwise a11 numbers from some point on are composite.

THEOREM 5. There are blocks of consecutive  composite numbers whose
len.gth  cxceeds any  given number N.

On the other hand, the tables indicate the indefinite persistence  of
prime-pairs, such  as 3, 5 or 101, 103, differing by 2. There are 1,224

such  pairs (p,p+2) below 100,000, and 8,169 below l,OOO,OOO.  The
evidence, when examined in detail, appears to justify the conjecture

There are infinitely  many  prime-pairs (p,p+2).

It is indeed reasonable to conjecture more. The numbers p, p+2,
‘ ~$4  cannot a11 be prime, since  one  of them must be divisible by 3;

but there is no obvious reason why p, p+2,  p+6  should not a11 be
prime, and the evidence indicates that such  prime-triplets also persist
indefinitely. Similarly, it appears that triplets (p,p+4,p+6)  persist in-
definitely. We are therefore led to the conjecture

There are infinitely  many  prime-triplets of the types (p, p+ 2, p + 6) and
(P>P+~,P+~).

Such  conjectures, with larger  sets of primes, may  be multiplied, but
their proof  or disproof is at present beyond the resources  of mathematics.

1.5. Some questions concerning primes. What are the natural
questions to ask about a sequence  of numbers such  as the primes ? We
have suggested some already, and we now ask some more.

(1) Is there a simple general formula for the n-th prime p,,  (a formula,
that is to say,  by which we cari  calculate the value of p, for any given
n without previous knowledge of its value) ? No such  formula is known.
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Indeed it is unlikely that such  a formula is possible, for the distribution
of the primes is quite  unlike what we should expect on any such
hypothesis.

On the other hand, it is possible to devise a number of ‘formulae’
for pn which are, from our point of view, no more than curiosities.
Such  a formula essentially defines  p, in terms of itself; and no previously
unknown p, cari  be calculated from it. We give an example in Theorem
419 of Ch. XXII.

Similar remarks apply to another question of the same  kind, viz.

(2) is there a general formula for the prime which follows  a given prime
(i.e.  a recurrence  formula such  as pn+l  = pR+2)  ?

Another natural question is

(3) is there a rule  by which, given any  prime p, we cari  Jind  a larger
prime q?

This question of course presupposes that, as stated in Theorem 4, the
number of primes is infinite. It would be answered in the affirmative if
any simple function f(n) were known which assumed prime values for a11
integral values of 12. Apart from trivial curiosities of the kind already
mentioned, no such  function is known. The only plausible conjecture
concerning the form of such  a function was made by Fermat,t and
Fermat’s conjecture was false.

Our next question is

(4,)  how many  primes are there less than a given number x ?

This question is a much  more profitable one, but it requires careful
interpretation. Suppose that, as is usual, we. define

44

to be the number of primes which do not exceed x,  SO that r(1) = 0,
n(2)  = 1, n-(20)  = 8. I f pn is the nth prime then

4~~)  = n,

so that n(x), as function of x, and pn,  as function of n, are inverse
functions.  TO ask for an exact formula for m(x),  of any  simple type, is
therefore practically to repeat question (1).

We  must therefore interpret the question differently, and ask ‘about
how many  primes . . . ? ’ Are most numbers primes, or only a small
proportion ? 1s there any  simple function f (x) which is ‘a good measure’
of 77(x)?

t See $ 2.5.
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We answer these questions in $ 1.8 and Ch. XXII.

1.6. Some notations. We shall often use the symbols

(1.6.1) 0, 0,  -3

and occasionally

(1.6.2) <, >,=.

These symbols are defined as follows.
Suppose that n is an integral variable which tends to infinity, and x a

continuous  variable which tends to infinity or to zero or to some other
limiting value; that 4(n) or +( x is a positive funct’ion  of n or x; and)
that  f(n)  or f( 1x is any  other function of n or x. Then

(i) f = O(4)  means  thatt If j < A$,
where A is independent of n or x,  for a11 values of n or x in question;

(ii) f = o(4) means  that fi4 -+  0;
and

(iii) f - + means  that fld -+ 1.
Thus 10x = O(x), sinx = O(l), x = 0(x2),

x = 0(x2), sinx = o(x), x+1-x,

where x + CO,  and

x2  = O(x), x2  = o(x), sinx - 2, 1+x - 1,

when x -+  0. It is to be observed that f = o(+) implies, and is stronger
than, f = O(4).

As regards the symbols (1.6.2),

(iv) f < 4 means  fi+ -+  0, and is equivalent to f == o(+);
(4 f > 4 meansf/+  -+  00;

(vi) f x + means  A$  < f < A+,

where the two A’s (which are naturally not the same)  are both positive
and independent of n or x. Thus f x 4 asserts that ‘f is of the same
order of magnitude as 4’.

We shall very often use A as in (vi), viz. as an unspeci$ed  positive
constant. Different A’s have usually different values, even when they
occur in the same  formula; and, even when definite values cari  be
assigned to them, these values are irrelevant to the argument.

SO far we have defined (for example) ‘j  = O(l)‘, but not ‘O( 1)’ in
isolation; and it is convenient to make onr  notations more elastic.  We

t 1 f 1 denotes,  as usually in analysis,  the modulus  or absolute  value off.
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agree that ‘O(C$)’  denotes an unspeci$ed  f such  that f = O(4). We cari
then Write,  for example,

0(1)+0(l)  = O(1) = o(5)

whenz+co,meaningbythis‘iff=  O(I)andg=  O(l)thenf+g= O(1)
and a,~orfiorif+g  = o(x)‘. Or again  we may  Write

&W)  = O(n),

meaning by this that the sum of n terms, each  numerically less than a
constant, is numerically less than a constant multiple of n.

It is to be observed that the relation ‘= ‘, asserted between 0 or o
symbols, is not usually symmetrical. Thus o(l) = O(1) is always true;
but 0( 1) == o(l) is usually false. We may  also observe that f - 4 is
equivalent to f = c++o($) or to

f = +{1+41)~.
In these circumstances we say  that f and 4 are asymptotically equivalent,
or that f is asymptotic to 4.

There is another phrase which it is convenient to define  here. Suppose
that P is a possible property of a positive integer, and P(x) the number
of numbers less than x which possess the property P. I f

P(x) - 2,
when x -+  CO,  i.e. if the number of numbers less than x which do not
possess the property is o(x), then we say  that almost a11 numbers possess
t,he  property. Thus we shall seet that n(x) = o(x), SO that almost a11
numbers are composite.

1.7. The logarithmic function. The theory of the distribution
of primes demands a knowledge of the properties of the logarithmic
function logx. We take the ordinary analytic theory of logarithms and
exponentials for grant,ed,  but it is important to lay stress on one
property of log x.1

Since
p+1

ez = l+~+...+~+(~+~)!+...,

x-nez > X- -f CO
(n+l)!

when x + CO.  Hence  ex tends to infinity more rapidly than any  power
of x. It follows that logx, the inverse function, tends to in$nity  more

t This follows at once from Theorem 7.
$ log z is, of course, the ‘Napierian’ logarithm of z, to base e.  ‘Common’  logarithms

bave no mathematical interest.
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slowly than any  positive power of x; logx -f 00,  but

(1.7.1) lw+()
-g- ’

or log x = 0(x6),  for every positive 8.  Similarly, loglog x tends to infinity
more slowly than any power of logx.

We may  give a numerical illustration of the slowness of the growth
or logx. If x = 10s  = 1,000,000,000  then

logx = 20.72...  .

Since  e3 = 20.08..., loglogx is a little greater than 3, and logloglogx a
little greater than 1. If x = 10l,OOO, logloglogx is a little greater than 2.
In spite of this, the ‘order of infinity’ of logloglogx has been made to
play a part in the theory of primes.

The function
X

log x

is particularly important in the theory of primes. It tends to infinity
more slowly than x but, in virtue of (1.7.1),  more rapidly than z?--~,
i.e. than any  power of x lower than the first; and it is the simplest
function which has this property.

1.8. Statement of the prime number theorem. After this preface
we cari  state the theorem which answers question (4) of 3 1.5.

THEOREM 6 (THE PRIME NUMBER THEOREM). The number ofprimes
not exceeding x is asymptotic to x/logx:

X?T(x)  - -.
log x

This theorem is the central theorem in the theory of the distribution
of primes. We shall give a proof  in Ch. XXII. This proof  is not easy
but, in the same  chapter,  we shall give a much  simpler proof  of the
weaker

THEOREM 7 (TCHEBYCHEF'S THEOREM). The order  of magnitude oj
?T(x) is x/logx:

n(x) X-L
log x

It is interesting to compare Theorem 6 with the evidence  of the tables.
The values of n(x) for x = 103,  x = 10s,  and x = 10s  are

168, 78,498, 50,847,478;

and the values of x/logx,  to the nearest integer, are
145, 72,382, 48,254,942.
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The ratios are 1.159  . ..> 1.084 . ..> 1*053...;

ad show an approximation, though not a very rapid one, to 1. The
excess of the actual  over the approximate values cari  be accounted for
by the general theory.

I f X
Y= logx

then log y = log x-loglog x,

and loglog x = o(log x),

SO that log y N logx, x = ylogx N ylogy.

The function inverse to x/logx  is therefore asymptotic to xlogx.
From this remark we infer that Theorem 6 is equivalent to

THEOREM 8: p, N nlogn.

Similarly, Theorem 7 is equivalent to

THEOREM 9: Pn x nlogn.

The 664,999th  prime is 10,006,721;  the reader shoulcl compare these
figures with Theorem 8.

We arrange what we have to say  about primes and  their distribution
in three chapters.  This introcluctory chapter contains  little but defini-
tions ad preliminary explanations; we have proved  nothing except  the
easy, though important, Theorem 1. In Ch. II we prove rather more :
in particular, Euclid’s theorems 3 ad 4. The first of these carries
with it (as we saw in $ 1.3).the  ‘fundamental theorem’ Theorem 2, on
which almost a11 our later work depends; ad we give two proofs in
$5  2.10-2.11. We prove Theorem 4 in $5  2.1, 2.4, and 2.6, using several
methocls, some of which enable us to develop the theorem a little further.
Later,  in Ch. XXII, we return to the theory of the distribution of primes,
ancl  clevelop it as far as is possible by elementary methods,  proving,
amongst other results, Theorem 7 ad finally Theorem 6.

NOTES ON CHAPTER 1
§ 1.3. Theorem 3 is Euclid  vii. 30. Theorem 2 does  not seem to have been

stated explicitly before Gauss (D.A.,  5 16). It was, of course, familiar  to earlier
mathematicians; but Gauss was the first to develop arithmetic as a systematic
science. See also $ 12.5.

3 1.4. The best table of primes is D. N. Lehmer’s List  of prime numbers  from  1
to 10,006,721  [Carnegie Institution, Washington, 165 (1914)].  The same  author’s
Fuctor  tablefor  thefirst  ten millions [Carnegie Institution, Washington, 105 (1909)]
gives tho smallest factor  of a11  numbers up to 10,017,OOO  not divisible by 2, 3, 5,
or 7. See also  Liste des nombres premiers du onzième million-(ed. Beeger, Amster-
dam, 1951). Information about earlier  tables Will  be found in the introductions
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to Lehmer’s two volumes, and in Dickson’s History,  i, ch. xiii. There are
manuscript tables by Kulik in the possession of the Academy of Sciences of Vienna
which extend up to 100,000,000,  but which are, according to Lehmer, not accurate
enough for publication. Our numbers of primes are less by 1 than Lehmer’s
because he counts  1 as a prime. Mapes [Math. Computation  17 (1963), 184-51  gives
a table of r(z)  for z any multiple of 10 million up to 1,000 million.

A list of tables of primes with descriptive notes is given in D. H. Lehmer’s
Guide to tables in the theory of numbers (Washington, 1941).

Theorem 4 is Euclid  ix. 20.
For Theorem 5 see Lucas, Théorie des nombres, i (1891), 359-61.
Kraitchik [Sphinx,  6 (1936), 166 and  8 (1938), 861  lists a11 primes betwetn

1012- lO*  and 1012+  104. These lists contain 36 prime pairs (p,p  + 2), of which the
last is 1,000,000,009,649, 1,000,000,009,651.

This seems to be the largest pair known.
In 5 22.20 we give a simple argument leading to a conjectural formula for the

number of pairs (p, p + 2) below z. This agrees well with the known facts. The
method cari be used to find many other conjectural theorems concerning pairs,
triplets, and larger blocks of primes.

3 1.5. Our list of questions is modified from that given by Carmichael, Theory
oj numbera, 29.

$ 1.7. Littlewood’s proof  that n(z)  is sometimes greater than the ‘logarithm
integral’  lix depends upon the largeness of logloglogz for large x. See Ingham,
ch. v, or Landau, Tiorlesungen,  ii. 123-56.

3 1.8. Theorem 7 was proved by Tchebychef about 1850, and Theorem 6 by
Hadamard and de la Vallée Poussin in 1896. See Ingham, 4-5; Landau, Hund-
buch, 3-55; and Ch. XXII, especially the note to 5s  22.14-16.
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2.1. First proof  of Euclid’s second theorem. Euclid’s own proof
of Theorem 4 was as follows.

Let 2, 3, 5 ,..., p be the aggregate of primes up to p, and let
(2.1.1) q = 2.3.5...p+l.

Then q is not divisible by any  of the numbers 2, 3, 5,...,  p. It is there-
fore either prime, or divisible by a prime between p and q. In either
case there is a prime greater than p, which proves the theorem.

The theorem is equivalent to
(2.1.2) n(x) -+ CO.

2.2. Further deductions  from Euclid’s argument. If p is the
nth prime p,,  and q is defined as in (2.1.1),  it is plain that

!l<pA+l
for n > 1,-f  and SO that PM1  <pE+l*
This inequality enables us to assign an Upper  limit to the rate of in-
crease  of p,, and a lower limit to that of ~T(X).

We cari,  however, obtain better limits as follows. Suppose that
(2.2.1) pn < P

for n = 1, 2,..., N. Then Euclid’s argument shows that
(2.2.tq p‘v+I < p,p,...p*+1  < 22+4+-.+2N+1  < 2zN+‘.

Since (2.2.1) is true for n = 1, it is true for a11 n.
Suppose now that n 3 4 and

ee”-’  < 5 < ee”.

Then$ en-l > 2n ee”-’  > 22”;

and SO 77(x)  > ?i(ee’-‘)  3 7r(22”)  2.72,

by (2.2.1). Since loglogx < n, we deduce that
x(x) 3 loglogx

for x > ee3; and it is plain that the inequality holds also for 2 < x < ee3.
We have therefore proved

THEOREM 10: ?T(x)  > loglogx (x 3 2).

We have thus gone  beyond Theorem 4 and found a lower limit for
t There is equality when

?l  = 1, P = 2, * = 3.
$ This is not true for n = 3.
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the order of magnitude of n(x). The limit is of course an absurdly weak
one, since for ut: = 10B it gives T&)  > 3, and the actual  value of n(x)
is over 50 million.

2.3. Primes in certain arithmetical progressions. -Euclid’s
argument may  be developed in other directions.

THEOREM 11. There are injinitely  muny  primes of the form 4n+3.
Define  p by q = 22.3.5...p-1,

instead of by (2.1 .l).  Then q is of the form 4nf3,  and is not divisible
by any  of the primes up to p. It cannot be a product of primes 4nfl
only, since the product of two numbers of this form is of the same  form;
and therefore it is divisible by a prime 4nf3,  greater than p.

THEOREM 12. There are infinitely many  primes of the form 6n+5.

Thé proof  is similar. We define  q by
q = 2.3.5...p-1,

and observe that any  prime number, except 2 or 3, is 6n+l  or 6n+5,
and that the product of two numbers 6n+l  is of the same  form.

The progression 4n+l  is more difficult.  We must assume the truth
of a theorem which we shall prove later (5 20.3).

THEOREM 13. If a and b have no common factor, then any  odd prime
diviser  of a2+b2  is of the form 4n+ 1.

If we take this for granted, we cari  prove that there are infinitely
many  primes 4n+  1. In fact we cari  prove

THEOREM 14. There are infinitely  many  primes of the form 8nf5.
We  take q = 32.52. V...p9-22,

a sum of two squares which have no common factor. The square of an
odd number 2mf  1 is

Wm+l)+l
and is Sn+ 1, SO that q is 8n+5.  Observing that, by Theorem 13, any
prime factor of q is 4nf 1, and SO Sn+ 1 or 8n+5,  and that the product
of two numbers Sn+l is of the same  form, we cari  complete the proof
as before.

Al1 these theorems are particular cases of a famous  theorem of
Dirichlet.

THEOREM 15*  (DIRICHLET’S THEOREM).~  If a is positive and a and b
have no common divisor except 1, then there are injinitely  many  primes of
the form an+b.

t An asterisk  attached  to the number of a theorem indicatas  that it is  not proved
anywhere  in the book.
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The proof  of this theorem is too difficult  for insertion in this book.
There are simpler proofs when b is 1 or - 1.

2.4. Second proof of Euclid’s theorem. Our second proof  of
Theorem 4, which is due to Polya, depends upon a property of what
are called  ‘Fermat’s numbers’.

Fermat’s numbers are defined by

F, = .Z2”+1,

SO that FI = 5, F, = 17, F3  = 257, F4  = 65537.

They are of great interest  in m.any  ways: for example, it was proved by
Gausst  that, if F, is a prime p, then a regular polygon of p sides  ‘cari
be inscribed in a circle  by Euclidean methods.

The property of the Fermat  numbers which is relevant here is

THEOREM 16. No two Fermat numbers bave  a common  diviser greater
than 1.

For suppose that F, and Fn+, where k > 0, are two Fermat  numbers,
and that

If x = 22”,  we have

F,+k-2
22+--  1 xzk-  1

F,
_ ~ = ~ = .2k-L3++...-1,

22”+  1 x+1

and SO F, 1 Fn+k-2. Hence

m 1 FTLtk9 m lF,,+,-2;

and therefore m j 2. Since  F, is odd, m = 1, which proves the theorem.
It follows that each  of the numbers F,,  F,,...,  F,,  is divisible by an odd

prime which does not divide any  of the others; and therefore that there
are at least n odd primes not exceeding F,.  This proves Euclid’s
theorem. Also

P ,,+l < 4, = 22”+1,

and it is plain that this ineyuahty,  which is a little stronger than (2.2.1),
leads to a proof  of Theorem 10.

2.5. Fermat’s and Mersenne’s numbers. The first four Fermat
numbers are prime, and Fermat  conjectured that a11  were prime. Euler,
however, found in 1732 that

FS = 22”+1  =  641.6700417

is composite. For 6 4 1  =  24+54  =  5.2’+1,’

t  S o e  5  5 . 8 .
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and EO
232 = 16.228 = (641-54)228 = 641~+(5.2’)~

= 641m-(641-l)”  = 641n-1,
where m and n are integers.

In 1880 Landry proved that
F6  = 22”+  1 = 274177.67280421310721.

More recent  writers have proved that F, is composite for
7 < n < 16, n = 18, 19, 23, 36, 38, 39, 55, 63, 73

1 5

and many  larger  values of n. Morehead and Western proved F7  and Fg
composite without determining a factor. No factor is known for FI3  or
for F14,  but in a11  the other cases proved to be composite a factor is known.

No prime F,,  has been found beyond F4,  SO that Fermat’s conjecture
has not proved a very happy one. It isperhaps  more probable that the
number of primes F, is finite.?  If this is SO, then the number of primes
2n+l  is finite,  since it is easy to prove

THEOREM 17. If a 3 2 and a”+ 1 is prime, then a is ecen  and n = 2m.

For if a is odd then an+1  is even; and if n has an odd factor k and
n = kl,  bhen  an  + 1 is divisible by

ak’+ 1
a’+1

= a(k-l)l-a(k-W+~~~+1~

It is interesting to compare the fate of Fermat’s conjecture with that
of another famous  conjecture, concerning primes of the form 2n-1.
We begin with another trivial theorem of much  the same  type as
Theorem 17.

THEOREM 18. If n > 1 and an-  1 is prime, then a = 2 and n is prime.

For if q>2, then a-l [an--l;  and if a=2 and n=kl,  then
2”-1  1 2n-1..

The problem of the primality of an-l is thus reduced to that of
the primality of 2p- 1. It was asserted by Mersenne in 1644 that

t This is what is suggested by considerations  of probability. Assuming Theorem 7,
one  might argue roughly as follows. The probability  that a number n is prime is at
most A

logn’
and therefore the total expectation of Fermat  primes is at most

.A  z {log<2;m+  1)) -=E  A c 2~ < A.

This argument (apart  from its general lack of precision)  assumes that there are no
special  reasons why a Fermat  number ahould be likely to be prime, while Theorems 16
and 17 suggest that there are some.
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M, = 2*---  1 is prime for
p = 2, 3, 5, 7, 13, 17, 19, 31, 67, 127, 257,

and composite for the other 44 values of p less than 257. The flrst
mistake in Mersenne’s statement was found about 1886,t  when Pervusin
and Seelhoff discovered that M,, is prime. Subsequently four further
mistakes were found in Mersenne’s statement and it need no longer be
taken seriously. In 1876 Lucas found a method for testing whether M,
is prime and used it to prove M12,  prime. This remained the largest
known prime until 1951, when, using different methods, Ferrier found
a larger prime (using only a desk calculating machine) and Miller and
Wheeler (using the EDSAC 1 electronic computer at Cambridge) found
several large primes, of which the largest was

180Jq,,  + 1,
which is larger than Ferrier ‘s. But Lucas’s test is particularly suitable  for
use on a binary digital computer and it has been applied by a succession
of investigators (Lehmer and Robinson using the SWAC and Hurwitz
and Selfridge using the IBM 7090, Riesel using the Swedish BESK,
and Gillies using the ILLIAC II). As a result it is now known that
Mp is prime for

p = 2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107:
127, 521, 607, 1279, 2203, 2281, 3217,
4253, 4423, 9689, 9941, 11213, lqS3.7;  ‘>\‘\A  1

and composite for a11 other p < 12000. The largest known prime is thus
M11213, a number of 3375 digits.

We describe  Lucas’s test in 0 15.5 and give the test used by Miller
and Wheeler in Theorem 10 1.

The problem of Mersenne’s numbers is connected with that of ‘per-
fect’ numbers, which we shall consider in 5 16.8.

We return to this subject in Q 6.15 and Q 15.5.

2.6. Third proof of Euclid’s theorem. Suppose that 2, 3,...,  pj
are the first j primes and let N(x) be the number of n not exceeding x
which are not divisible by any  prime p > pi.  If WC express such  an n
in the form n = nfm,
where m is ‘quadratfrei’, i.e. is not divisible by the square of any prime,
we have nl  = 2”13bz .  . . P;I,
with every b either 0 or 1. There are just 2i  possible choices  of thc
exponents and SO not more than 2i  different values of m. Again,
n,  < zin  < ýx  and SO there are not more than 4x different values of n,.

t Euler stated in 1732 that M,,  and M,,  are prime, but this was a mistake.
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Hence
(2.6.1) N(x) < 2jdL

If Theorem 4 is false, SO that the number of primes is finite, let the
primes be 2, 3,..., pi. In this case N(z)  = x for every x and SO

x < 2jh, x < 22j,

which is false for x 2 22j+ 1.

We cari  use this argument to prove two further results.

THEOREM 19. The series

(2.6.2)

is divergent.
c

1- zr ;+;+;+;+If+...
P

If the series  is convergent, we cari  choosej SO that the remainder after
j terms is less than 4,  i.e.

p~fp$2+... < ;.

The number of n < x which are divisible by p is at most x/p.  Hence
x-N(x), the number of n < x divisible by one or more of ~~+~,p~+~>...,
is not more than

L+X+... < 2x.
Pj+l  Pjt2

Hence, by (2.6.1),
;x < N(x) < 2idx, x < 22j+2,

which is false for x 3 22i+2.  Hence the series  diverges.

THEOREM 20: T(X) > ~l”gx  (x > 1);
2log2 Pn < 4n.

We take j = T(X),  SO that pifI  > x and N(x) = x. We have
x = N(x) < 2”%x, . 27’(r)  3 4x

and the first  part of Theorem 20 follows on taking logarithms. If we
put  x = Pn, SO that V(Z)  = n, the second part is immediate.

By Theorem 20, ~(109)  > 15; a number, of course, still ridiculously
below the mark.

2.7. Further results on formulae for primes. We return for
a moment to the questions raised in Q 1.5. We may ask for ‘a formula
for primes’ in various senses.

(i) We may ask for a simple function  f(n) which assumes a11 prime
values and only prime cakes,  i.e. which takes successively the values
Pu I)z,-* when n takes the values 1,2,...  . This is the question which we
discussed in $ 1.5.

5591 C
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(ii) We  may  ask for a function which assumes prime values only.
Fermat’s conjecture, had it been right, would have supplied an answer
to this question.? As it is, no satisfactory answer is known.

(iii) We may  moderate our demands and ask merely for a function
which assumes un inJinity  of prime values. It follows from Euclid’s
theorem that j’(n) = n is such  a function, and less trivial answers are
given by Theorems 11-15.

Apart from trivial solutions, Dirichlet’s Theorem 15 is the only
solution known. It has never been proved that n2+1,  or any  other
quadratic form in n, Will  represent an infinity of primes, and a11 such
problems seem to be extremely difficult.

There are some simple negative theorems which contain a very partial
reply to question (ii).

THEOREM  21. No polynomial f (n) with integral coefficients, not a con-
stant, cari. be prime for a11 n, or for a11 sujiciently large  n.

We  may  assume that the leading coefficient in f (n) is positive, SO that
f(n)-+m  when n+co,  and f(n) > 1 for n > N, say.  If x > N and

f (5) = a,xk+...  = y > 1,
then f(v+4 = qk-y+x)k+...
is divisible by y for every integral r;  and f (ry+x) tends to infiniiy
with r.  Hence  there are infinitely many  composite values off(n).

There are quadratic forms which assume prime values for consider-
able sequences  of values of n. Thus n2-n+41  is prime for 0 < n < 40,
and n2-79n+1601  = (n-40)2+(n-40)+41
for 0 < n < 79.

A more general theorem, which we shall prove in 5 6.4, is
T H E O R E M  2 2 .  If f(n) = P(n,  2’&,  3% ,...,  P)

is a polynomial in its arguments, with integral coeficients,  and f(n) -+  00
when n + oo,$  then f (n) is compositefor an in$nity  of values of n.

t It had been suggested that Fermat’s sequence should be replaced  by

2+1, z2+1, 2zp+  1, 2zz2+  1, . .  .  .
The first four numbers  are prime, but FIB, the fifth member of this sequence, is now
lrnown  to be composite. Another suggestion was that the sequence Al,,  where p is
confined to the Mersenne primes, would contain  only primes. The first five  Mersenne
primes are

M,  = 3, M,  =  7, M,  = 31, M, =  127, M,,  = 8191
and the sequence proposed would be

Mm M,,  Mm  Mn,,  Ma,,,.
The first four are prime but M,,,,  is composite.

$ Some tare  is required in the statement of the theorem, to avoid such an f(n) as
2n3”-6”+  5, which is plainly prime for a11  n.
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2.8. Unsolved problems concerning primes. In 0 1.4 we stated
two conjectural theorems of which no proof  is known, although empirical
evidence makes their truth seem highly probable. There are many  other
conjectural theorems of the same  kind.

There are in$nitely many  primes n2+ 1. More generally, if a, b, c are
integers without a common diviser,  a is positive, afb and c are not both
even, and b2-4ac  is not a Perfect  square, then there are in$nitely muny
primes an2+bn+c.

We have already referred to the form n2+l  in 5 2.7 (iii). If a, b, c

have a common divisor, there cari  obviously be at most one  prime of
the form required. If a+b and c are both even, then JV = an2+6n+c
is always even. If b2-4ac  = k2,  then

4aN = (2an+b)2-k2.

Hence, if N is prime, either Zan+b+k  or Zan+b--k  divides 4a, and this.
cari  be true for at most a finite  number of values of n.  The limitations
stated in the conjecture are therefore essential.

There is always a prime between n2  and (n+ 1)2.
If n > 4 is eeen,  then n is the sum of two odd primes.

This is ‘Goldbach’s theorem’.

If n > 9 is odd,  then n is the sum of three odd pr%mes.
Any n from some point onwards is a square or the sum of a prime and

a square.

This is not true of a11 n; thus 34 and 58 are exceptions.
A more dubious conjecture, to which we referred in 5 2.5, is

The number of Fermat  primes F, is$nite. c

2.9. Moduli of integers. We now give the proof  of Theorems 3
and 2 which we postponed from 5 1.3. Another proof  Will  be given in
$ 2.11 and a third in Q 12.4. Throughout this section integer means
rational integer, positive or negative.

The proof  depends upon the notion of a ‘modulus’ of numbers. A
modulus is a system S of numbers such  that the sum and  diflerence  of
any  two members of S are themselaes members of S: i.e.

(2.9.1) mES.  nESi(m&n)ES.

The numbers of a modulus  need not necessarily be integers or even
rational; they may  be complex  numbers, or quaternions: but here we
are concerned only with moduli of integers.
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The single number 0 forms a modulus (the nul1  ,modulus).
It follows from the definition of S that

aES+O=u-aES,2a=afaES.

Repeating the argument, we see that na E S for any  integral n (positive
or negative). More generally

j2.9.2) aES.bES+xafybES

for any integral x, y. On the other hand, it is obvious that, if a and b
are given, the aggregate of values of xa+yb forms a modulus.

It is plain that any  modulus S, except  the nul1  modulus, contains
some positive numbers. Suppose that d is the smallest positive number
of S. If n is any positive number of S, then n-xd E S for a11 x.  If c is
the remainder when n is divided by d and

n = xdfc,

then c E S and 0 < c < d. Xince  d is the smallest positive number of
S, c = 0 and n = zd. Hence

THEOREM 23. Any modulus, other than the nul1  modulus, is the aggregate
of integral multiples of a positive number d.

IVe  define  the highest common diviser d of two integers a and b, not
both zero, as the largest positive integer which divides both a and 6;
and Write a = (a, b).

Thus (0, a) = [ai. We may  define  the highest common divisor

(a, b, c >...,  k)

of any set of positive integers a, b, c,..., k in the same  way.
The aggregate of numbers of the form

xa+yb,

for integral x, y, is a modulus which, by Theorem 23, is the aggregatc
of multiples zc of a certain positive c. Since  c divides every number of
S, it divides a and b, and therefore

c <a.

On the other hand, dia. dlb+djxa+yb,

SO that d divides every number of S, and in particular c. It follows that

c,= d

and that S is the aggregate of multiples of d.
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THEOREM 24. The modulus xafyb is the aggregate of multiples of
d = (a,b).

It is plain that we have proved incidentally

THEOREM 25. The equution
ax+by  =  n

is soluble in integers x, y if and only if d 1 n. In particular,

ax+by = d
is soluble.

THEOREM 26. Any cornmon  divisor of a and b divides d.

2.10. Proof of the fundamental theorem of arithmetic. We
are now in a position to prove Euclid’s theorem 3, and SO Theorem 2.

Suppose that p is prime and p 1 ab. Ifp 1 a then (a, p) = 1, and there-
fore, by Theorem 24, there are an x and a y for which xaf yp = 1 or

xab+ypb  = b.
But p 1 ab and p lpb, and therefore p 1 b.

Practically the same  argument proves

THEOREM 27: (a, b) = d . c > 0 + (UC, bc) = dc.

For there are an x and a y for which xa+yb  = d or

xacfybc  = dc.
Hence (ac, bc) ) dc. On the other hand, d j a + dc 1 ac and d / b + dc 1 bc;
and therefore, by Theorem 26, dcJ  (ac, bc). Hence (ac, bc) = dc.

2.11. Another proof of the fundamental theorem. We cal1
numbers which cari  be factorized into primes in more than one  way
abnormal. Let n be the least abnormal number. The same  prime P
cannot appear in two different factorizations of n, for, if it did, n/P
would be abnormal and n/P  < n. We have then

n =  P~P~P~...  =  q1q2...,
where the p and q are primes, no p is a q and no q is a p.

We may  take p, to be the least p; since n is composite, p: < n.
Similarly, if q1 is the least q, we have qf < n and, since p, # ql,  it
follows that plql  < n. Hence, if N = n-p,q,,  we  have 0 < N < n
and N is not abnormal. Now p1 1 n and SO p1 / N; similarly qi j N.
Hence p, and q1 both appear in the unique factorization of N and
p,q, [N. From this it follows that plql  j n and hence  that q1 1 nipI.
But n/pl  is less than n and SO has the unique prime factorization p,p,..  .  .
Since  q1 is not a p, this is impossible. Hence there cannot be any  ab-
normal numbers and this is the fundamental theorem.
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NOTES ON CHAPTER II
8 2.2. Mr. Ingham tells us that the argument used here is due to Bohr and

Littlewood: see Ingham, 2..
8 2.3. For Theorems 11, 12, and 14, see Lucas, !Z’h&J&  de.9  nomlrres,  i (1891),

353-4;  and for Theorem 15 see Landau, Handbuch,  422-46, and 17orleaulzgen,  i.
79-96.

8 2.4. See P6lya and SzegB,  ii. 133, 342.
$2.5. Sec  Dickson,  Hi&ory, i, chs. i, xv, xvi, Rouse Bal1  (Coxeter), 6569,

and.  for numerical results, Kraitchik, Théorie dea  nombres,  i (Paris, 1922),  22,
218, D. H. Lehmer, Bulletin Amer. Math. Soc. 38 (1932).  3834 and, for the repent
large primes and factors of Fermat numbers reicently  obtained  by modern high-
speed computing, Miller and Wheeler, Nature, 168 (1951), 838, Robinson, Froc.
AM.  Math. SOC. 5 (1954),  842-6, and Math. tables, 11 (1957),  21-22, Riesel,  &f&.
a& 12 (1958),  60, Hurwita and Selfridge, Amer. Math. Soc. Noticee, 8 (1961). 601.
gee  D. H. GUies [Math. Computation  18 ( 1964),  93-51 for the three largest Mersenne
primes and for references.

Ferrier’s prime is (2i4*+ 1)/17  and is the largest prime found without the use
of electronic computing (and may well remain SO).

Much  information about large numbers known to be prime is to be found in
Sphitix  (Brussels, 1931-9). A bat in vol. 6 (1936),  166, gives a11  those (336 in
number) between lO?z-  lO* and loi*, and one  in vol. 8 (1938),  86, those between
loir  and lO’z+  104. In addition to this, Kraitchik, in vol. 3 (1933),  99101, gives
a list of 161 primes ranging from 1,018,412,127,823 to 2i2’-  1, mostly factors of
numbers 2”& 1 . This list supersedes an earlier list in Mathemutica (Cluj), 7 (1933).
9394;  and Kraitchik himself and other writers add substantially to it in later
numbers. See also Rouse Bal1  (Coxeter), 62-65.

Our proof that 641 1 F6  is taken from Kraitchik, Théork  de-9  nombrea,  ii (Paris,
1926),  221.

$ 2.6. See Erdbs,  Mathematica, B, 7 (1938),  l-2. Theorem 19 was  proved by
Euler in 1737.

8 2.7. Theorem 21 is due to Goldbach (1752) and Theorem 22 to Morgan Ward,
Journul  London Math. Soc. 5 (1930),  106-7.

f 2.8. ‘Goldbach’s theorem’ wa~  enunciated by Goldbach in a letter to Euler in
1742. It is still unproved, but Vinogradov proved in 1937 that a11  odd numbers from
a certain point onwards are sums of three odd primes. van der Corput  and Ester
mann used his method to prove that ‘almost all’ even numbers are sums of two
primes. See Estermann, Introduction, for Vinogradov’s proof,  and James, Bulletin
Amer. Math. Soc. 55 (1949),  24660, for an account  of recent  work in this field.

Mr. A. K. Austin and Professor P. T. Bateman each  drew my attention to the
falsehood of one  of the conjectures in this section in the third edition.

$$  2.9-10.  The argument follows the lines  of Hecke, ch. i. The definition of
a modulus is the natural one,  but is redundant. It is sufficient to assume that

For then meS.nES+m-nES.

O=n-neS, -n=O-nsS, m+n = m-(-n) E S .
8 2.11. F. A. Lindemann, Quart. J. oj Maih.  (Oxford), 4 (1933),  319-20, and

Davenport, Higher arithmetic, 20. For somewhat similar proofs, see Zermelo,
G6ttinger  Nachrichten (new series),  i (1934),  43-44, and Hasse, Journal jür Math.
159 (1928),  3-6.



III

FAREY SERIES AND A THEOREM OF MINKOWSKI

3.1. The definition and simplest properties of a Farey series.
In this chapter we shall be concerned primarily with certain properties
of the ‘positive rationals’ or ‘vulgar fractions’, such  as 4 or-&.  Such
a fraction may  be regarded as a relation between two positive integers,
and the theorems which we prove embody properties of the positive
integers.

The Farey series  3, of order n is the ascending series  of irreducible
fractions between 0 and 1 whose denominators do not exceed n. Thus
h/k belongs to 3, if

(3.1.1) O<h<k<n,  (h,k)=l;
the numbers 0 and 1 are included in the forms  p and +.  For example,
BS if+ 01112'3~$?$l

1, 5, a> $9 $1 2, 5, -3, 4, 53 1'

The characteristic properties of Farey series  are expressed by the
following theorems.
THEOREM 28. If h/k and h’/k’ are two successive terms  of En,  then

(3.1.2) kh’-hk’ = 1.
THEOREM 29. If h/k, h”/k”, and h’/k’ are three successive tem of B,,

then

(3.1.3)
h” h+h’
-T=kfl”k

We shall prove that the two theorems are equivalent in the next
section, and then give three different proofs of both of them, in s3.3,
3.4, and 3.7 respectively. We conclude this section by proving two still
simpler properties of 5,.

THEOREM 30. If hjk  and h’/k’  are two successive terma  of s,, then
(3.1.4) kfk’ > n.

The ‘mediant ’
h+h’
- tk+k’

of hjk and h’/k’  falls  in the interval

Hence, unless (3.1.4) is true, there is another term of j’j,  between hlk
and h’lk’.

t Or the reduced form of this fraction.
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THEOREM 31. If n > 1, then no two successive term  of 5,  bave  the
same  denominator.

If k > 1 and h’/k  succeeds h/k in s,,  then h+l < h’ < k. But then

h h+l
&jq- <;;

and h/(k-  l)t cornes between h/k  and h’/k  in &,  a contradiction,

3.2. The equivalence  of the two characteristic properties.
We  now prove that each  of Theorems 28 and 29 implies the other.

(1) Theorem 28 implies Theorem 29. If we assume Theorem 28, and
solve the equations
(3.2.1) kh”-hk”  =  1 , k”h’-h”k’  zz  1
for h” and k”,  we obtain

h”(kh’-hk’) = h+h’, k”(kh’-hk’)  = k-f-k’
and SO (3.1.3).

(2) Theorem 29 implies Theorem 28. We assume that Theorem 29 is
true generally and that Theorem 28 is true for snml,  and deduce that
Theorem 28 is true for 5,. It is plainly sufficient to prove that the
equations (3.2.1) are satisfied when h”/k”  belongs to 3, but not to
&-i,  SO that k” = n. In this case, after Theorem 31, both k and k’
are less than k”,  and hlk and h’/k’ are consecutive terms in ijnml.

Since (3.1.3) is true ex hypothesi,  and h*/k’ is irreducible, we have

h+h’  = Ah”, k+k’ = hk”,
where X is an integer. Since k and k’ are both less than k”, X must be 1.
Hence h” f h+h’, k” = k+k’,

kh”-hk”  r kh’-hk’  = 1;
and similarly kWh’--h”k’  = 1.

3.3. First proof of Theorems 28 and 29. Our first proof  is a
natural development of the ideas used in 5 3.2.

The theorems are true for n = 1; we assume them true for s,&-r  and
prove them true for 3,.

Suppose that h/k and h’lk’ are consecutive in S+I but separated by
h”/k”  in s,.$  Let

(3.3.1) kh”-hk” = r > 0, k”h’-h”k’  = s > 0.
t Or the reduced form  of this fraction.
$ After Theorem 31, h”/k”  is the only term of 3,  between h/k  and h’/k’  ; but we do

not assume this in the proof.
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Solving these  equations for h” ad k”, and remembering that

kh’-hk’  = 1,
we obtain

(3.3.2) h” = shSrh’, k” = sk+rk’.
Here (T,s)  = 1, since (h”, k”) = 1.

Consider now the set S of a11 fractions

2.5

(3.3.3) H ph+Xh’-ZZZ
K pk+Xk’

in which h ad t.~  are positive integers ad (X,p)  = 1. Thus h”/k”
belongs to S. Every fraction of S lies between h/k and h’/k’,  and is in
its lowest terms,  since any  common divisor of H ad K would divide

k(ph+Ah’)-h(pk+Xk’)  = X
and h’(pk+hk’)-k’(ph+AF’)  = p.
Hence  every fraction of S appears sooner or later in some 5,;  and  plainly
the first to make its appearance is that for which K is least, i.e.  that
forwhichX= lanclp= 1. This fraction must be h”/k”,  and SO

(3.3.4) h” = h+h’, k” = kfk’.
This proves Theorem 29. It is to be observecl that the equations

(3.3.4) are not generally true for three successive fractions of s,,  but
are (as we have shown) true when the central fraction has made its
first appearance in 3,.

3.4. Second proof of the theorems. This proof  is not inductive,
ad gives a rule  for the construction of the term which succeeds  h/k
in 3,.

Since (h, k) = 1, the equation

(3.4.1) kz-hy  = 1
is soluble in integers (Theorem 25). If x,,,  y,, is a solution then

x,+6 yofrk
is also  a solution for any positive or negative integral r.  We  cari  choose
Y SO that n - k  <  y,,+Tk < n .
There is therefore a solution (x, y) of (3.4.1) such  that

(3.4.2) (&Y)  = 1, O<n-k<y<n.
Since x/y is in its lowest terms, ad y < n, x/y is a fraction of 5,.

Also
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SO that x/y cornes later in 5, than hlk.  If it is not h’lk’,  it cornes later
than h’/k’,  and x h k’x-h’y 1- - -  = ~

y k’ k’y 2 Ey;

while h’ h kh’-hk’  1
k’ k kk’ >kk’.

Hence 1 kx-hy z2-!>1_+1- k+Y- -
&i  - ky y k’k’y kk’ kk’y

n 1
>kk’y2g’

by (3.4.2). This is a contradiction, and therefore x/y must be h’lk’, and
kh’-hk’  ‘= 1.

Thus, to find the successor  of + in z13, we begin by finding  some solution (z,,  y,,)
of 9r-4y  = 1, e.g. zO = 1, y0  = 2. We then choose  r SO that 2+9r  lies between
13-9 = 4 and 13. This gives r = 1, x = 1$4r  = 5, y = 2+9r  = 11, and the
fraction required is 5%.

3.5. The integral lattice. Our third and last proof  depends on
simple but important geometrical ideas.

Suppose that we are given an origin 0 in the plane and two points
P, Q not collinear with 0. We complete the parallelogram OPQR,
produce its aides indefinitely, and draw the two systems of equidistant
parallels of which OP, QR and OQ, PR are consecutive  pairs, thus
dividing the plane into an infinity of equal parallelograms. Such  a
figure is called a Zuttice  (Gitter).

A lattice is a figure of lines. It defines  a figure of points, viz. the
system of points of intersection of the lines,  or lattice points. Such
a system we cal1 a point-Zattice.

Two different lattices may  determine the same  point-lattice; thus
in Fig. 1 the lattices based on OP, OQ and on OP, OR determine the
same  system of points. Two lattices which determine the same  point-
lattice are said to be equivalent.

It is plain that any  lattice point of a lattice might be regarded as the
origin 0, and that the properties of the lattice are independent of the
choice  of origin and symmetrical about any  origin.

One  type of lattice is particularly important here. This is the lattice
which is formed (when the rectangular coordinate axes are given) by
parallels to the axes at unit distances, ,dividing  the plane into unit
squares. We  call  this the fundamental  luttice  L, and the point-lattice
which it determines, viz. the system of points (x, y) with integral coordi-
nates,  the fundamental  point-luttice A.
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Any point-lattice may  be regarded as a system of numbers or vectors,
the complex coordinates x+iy  of the
lattice points or the vectors to these
points from the origin. Such a system
is plainly a modulus in the sense of
$2.9. If P and Q are the points (xi,  yi)
and (x2,  y.J,  then the coordinates of
any  point X of the lattice based upon
OP and OQ are

x = mx,+nx,, Y = wI+ny2,
where m and n are integers; or if z1 and
z2 are the complex coordinates of P
and Q, then the complex coordinate
of S is 2 = mz,+nz,.

3.6. Some simple properties of
the fundamental lattice. (1) We
now consider the transformation de-
fined by

(3.6.1) x’ = axfby,  y’ = cx+dy,

where a, b, c, d are given, positive FIG. 1
or negative, integers. It is plain
that any  point (~,y) of A is tran.sformed into another point (z’, y’)
of A.

Solving (3.6.1) for x and y, we obtain

(3.6.2)
dx’ - by ’

x=Jrp
cx’-ay’

y=  -G’

I f
(3.6.3) A = ad-bc = fl,

then any  integral values of x’ and y’ give integral values of x and y,
and every lattice point (~‘,y’)  corresponds to a lattice point (~,y). In
this case A is transformed into itself.

Conversely, if A is transformed into itself, every integral (x’, y’) must
give an integral (x, y). Taking in particular (x’, y’) to be (1,0) and (0, l),
we see that

A Id, Al& A I c, A la,

and SO A2  1 ad-bc, A2jA.
Hence  A = fl.
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We  have thus proved

THEOREM 32. A necessary and suficient  condition that the transforma-
tion (3.6.1) should transform  A into itself  is that A = fl.

We  cal1 such  a transformation unimodular.

R R
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/' 6

1' /
8,' !
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/ / 1'

Il ,' 1'
I
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/=
'P

1'/ pc
0 0
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FIG. 20

(2) Suppose now that P and Q are the lattice points (a,~)  and (b,d)
of A. The area  of the parallelogram defined by OP and OQ is

6 = &(a&bc) = lad-bel,

the sign being chosen to make 6 positive. The points (~‘,y’)  of the
lattice A’ based on OP and OQ are given by

x’  = xa+yb, y’ = xcfyd,

where x and y are arbitrary integers. After Theorem 32, a necessary
and sufficient condition that A’ should be identical with A is that
6 = 1.
THEOREM 33. A necessary and su.cient  condition that the luttice  L’

based upon  OP and OQ should be equivalent to L is that the area  of the
parallelogram dejined  by OP and OQ should be unity.
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(3) We cal1 a point P of A visible (i.e.  visible from the origin) if there
is no point of A on OP between 0 and P. In order that (x, y) should
be visible, it is necessary and sufficient that x/y should be in its lowest
terms, or (z, y) = 1.

THEOREM 34. Suppose that P and Q are visible points of A, and that
6 is the area  of the parallelogram  J defined  by OP and OQ. Then

(i) if 6 = 1, there is no point of A inside J;
(ii) if 6 > 1, there is ut  least one  point of A inside J, and, unless that

point is the intersection of the diagonals  of J, ut  least two, one  in each  of
the triangles into which J is divided by PQ.

There is no point of A inside J if and only if the lattice L’ based on
OP and OQ is equivalent to L, i.e. if and only if 6 = 1. If 6 > 1;there
is at least one  such  point S. If R is the fourth vertex of the parallelo-
gram J,  and RT is parallel and equal to OS, but with the opposite sense,
then (sinie the properties of a lattice are symmetrical, and independent
of the particular lattice point chosen as origin) T is also  a point of A,
and there are at least two points of A inside J unless T coincides with
S. This is the special  case mentioned under (ii).

The different cases are illustrated. in Figs. 2 a, 2 b, 2 c.

3.7. Third proof of Theorems 28 and 29. The fractions h/k  with

O<h<k<n, (h, k) = 1
are the fractions of &,  and correspond to the visible points (k, h) of A
inside, or on the boundary of, the triangle defined by the lines  y = 0,
y = x, x = n.

If we draw a ray through 0 and  rotate it round the origin in the
counter-clockwise direction from an initial position along  the axis of x,
it Will  pass in turn through each  point (k, h) representative of a Farey
fraction. If P and P’ are points I(k, h) and (k’, h’) representing con-
secutive fractions, there is no representative point inside the triangle
OPP’ or on the join PP’, and therefore, by Theorem 34,

kh’-hk’  = 1.

3.8. The Farey dissection of the continuum. It is often con-
venient to represent the real numbers on a circle  instead of, as usual,
on a straight line, the abject of the circular  representation being to
eliminate integral parts. We  take a circle  C of unit circumference, and
an arbitrary point 0 of the circumference as the representative of 0,
and represent x by the point P,  whose distance from 0, measured round
the circumference in the counter-clockwise direction, is x. Plainly a11
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integers are represented by the same  point 0, and numbers which differ
by an integer have the same  representative point.

It is sometimes useful to divide up the circumference of C in the
following manner. We take the Farey series  g,,  and form all the
mediants h+h’

’ = k+k’

of successive pairs h/k,  h’lk’. The first and last mediants are

0+1  1 n-l+1  n

iSn=-’  p=-’n+l n+l nfl

The mediants naturally do not belong themselves to 3,.
We now represent each  mediant tu  by the point Pp. The circle is thus

divided up into arcs which we cal1 Farey arcs, each  bounded by two
points Pp  and containing one  Farey point, the representative of a term
of 3,.  Thus

(iz&l)
is a Farey arc containing the one  Farey point 0. The aggregate of
Farey arcs we cal1 the Farey dissection of the circle.

In what follows Fe  suppose that n > 1. If Phik  is a Farey point, and
h,/k,,  h,/k,  are the terms of 5, which precede and follow h/k,  then the
Farey arc round Phik  is composed of two parts, whose lengths are

h h+h 1 h+h,  h 1

-a=-’k(k+k,)
---=-
W-k,  k k(k+k,)

respectively. Now k+k,  < 2n,  since  k and k, are unequal (Theorem 31)
and neither exceeds n; and k+k,  > n, by Theorem 30. We thus obtain

THEOREM 35. In the Farey dissection of order  n, where n > 1, each
part of the arc which containa  the representative of h/k  has a length between

1 1

k(2n-1)’ k(nfl) *

The dissection, in fact,  has a certain ‘uniformity’ which explains its
importance.

We use the Farey dissection here to prove a simple theorem concern-
ing the approximation of arbitrary real numbers by rationals, a topic
to which we shah  return in Ch. XI.

THEOREM 36. If 5 is any  real number, and n a positive integer, then
there is an irreducible fraction h/k  such  that

O<k<n,
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We may  suppose that 0 < c < 1. Then t falls in an interval  bounded
by two successive fractions of s,, say  hlk  and h’]k’,  and therefore in
one  of the intervals

(;> G), r$, $).

Hence, after Theorem 35, either h/k  or h’lk’ satisfies the conditions:
h/k  if g falls in the first interval, h’/k  if it falls in the second.

3.9. A theorem of Minkowski. If P and Q are points of A, P’
and Q’ the points symmetrical to P and Q about the origin, and we add
to the parallelogram J of Theorem 34 the three parallelograms based
on OQ, OP’, on OP’, OQ’,  and on OQ’, OP, .we obtain a parallelogram
K whose centre is the origin and whose area  46  is four times thatof J.
If 6 has the value 1 (its least possible value) there are points of A on
the boundary of K, but none, except 0, inside. If 6 > 1, then there are
points of A, other than 0, inside K.  This is a very special  case of a
famous  theorem of Minkowski, whiclh  asserts that the same  property is
possessed, not only by any parallelogram symmetrical about the origin
(whether generated by points of A or not), but by any  ‘convex region’
symmetrical about the origin.

An open  region R isa set of points with the properties (1) if P belongs
to R, then a11 points of the plane sufficiently near to P belong to R,
(2) any  two points of R cari  be joined by a continuous  curve  lying
entirely in R. We may  also express (1) by saying that any  point of R
is an interior  point of R. Thus the i:nside of a circle  or a parallelogram
is an open region. The boundary C ,of R is the set of points which are
limit points of R but do not themselves belong to R. Thus the boundary
of a circle  is its circumference. A closed  region R*  is an open region R
together with its boundary. We consider only bounded regions.

There are two natural definitions of a convex region, which may  be
shown to be equivalent. First, we may  say that R (or R*) is convex
if every point of any  chord  of R, i.e.  of any line joining two points of
R, belongs to R. Secondly, we may  say  that R (or R*) is convex if it
is possible, through every point P of C, to draw at least one  line 1 such
that the whole of R lies on one  side  of 1. Thus  a circle  and a parallelo-
gram are convex; for the circle,  1 is the tangent at P, while for the
parallelogram every line 1 is a side  except at the vertices,  where there
are an infinity of lines  with the property required.

It is easy to prove the equivalence  of the two definitions. Suppose first that
R is convex according to the second definition, that P and Q belong to R, and
that a point S of P& does  not. Then there is a point T of C (which may be S
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itself) on PS, and a line 1 through T which leaves R entirely on one side;  and,
since a11 points sufficiently near to P or & belong to R, this is a contradiction.

Secondly, suppose that R is convex according to the first definition and that
P is a point of C; and consider the set L of lines  joining P to points of R. If Y1
and Y2  are points of R, and Y is a point of YiY,,  then Y is a point of R and PY
a line of L. Hence there is an angle APB such  that every line from P within
APB, and no line outside APB, belongs to L. If APB > n, then there are
points D, E of R such  that DE passes through P, in which case P belongs to
R and not to C, a contradiction. Hence APB < rr,  If APB = rr,  then AB is
a line 1;  if APB < rr,  then any  line through P, outside the angle, is a line 1.

It is plain that convexity  is invariant for translations and for magni-
fications  about a point 0.

A convex region R has an area  (definable, for example, as the Upper
bound of the areas  of networks of small squares whose vertices lie in R).

THEOREM 37 (MINKOWSKI’S THEOREM). Any contez  region R sym-
metrical  about  0, and of area  greater than 4, includes points of A other
than 0.

3.10. Proof of Minkowski’s theorem. We begin by proving. a
simple theorem whose truth is ‘intuitive’.

THEOREM 38. Suppose that R,  is an open  region including 0, that
R,  is the congruent and  similarly situuted region about  any  point P of A,
and that no two of the regions R,  overlap. Then the area  of R,  doe.s  not
exceed 1.

The theorem becomes ‘obvious’  when we consider that, if R,  were
the square bounded by the lines  x = j--, y = j-4, then the area  of
R,  would be 1 and the regions R,, with their boundaries, would caver
the plane. We may  give an exact proof  as follows.

Suppose that A is the area  of A,, and A the maximum distance of
a point of Cet  from 0; and that we consider the (2n+1)2  regions R,
corresponding to points of A whose coordinates are not greater numeri-
cally than n. Al1 these regions lie in the square whose sides  are parallel
to the axes and at a distance n+A  from 0. Hence (since the regions
do not overlap)

(2n+  I)2A  < (2n+2Aj2, A< (l+s)t

and the result follows when we make n tend to infinity.
It is to be noticed that there is no reference  to symmetry or to con-

vexity in Theorem 38.

t We use C systematically for the boundary of the correspondirq  R.
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It is now easy to prove Minkowski’s theorem. Minkowski himself
gave two proofs, based on the two definitions of convexity.

(1) Take the first definition, and suppose that R,  is the result of
contracting R about 0 to half its linear dimensions. Then the area  of
R,  is greater than 1, SO that two of the regions R,  of Theorem 38
overlap, and there is a lattice-point P such  that Ro and R,  overlap.
Let Q (Fig. 3~)  be a point common to R,  and R,. If OQ’ is equal
and parallel to PQ, and Q” is the image of Q’ in 0, then Q’, and t,here-

(4
FIGI. 3

fore Q”, lies in R o; and therefore, by the definition of convexity, the
middle point of QQ”  lies in R,. But this point is the middle point of
OP; and therefore P lies in R.

(2) Take the second definition, and suppose that there is no lattice
point but 0 in R. Expand R*  about 0 until, as R’*,  it first includes
a lattice point P. Then P is a point of C’,  and there is a line 1,  say  l’,
through P (Fig. 3 b). If R,  is R’ contracted about 0 to half its linear
dimensions, and 1, is the parallel to 1 through the middle point of OP,
then 1, is a line 1 for R,. It is pla:inly  also a line 1 for R,,  and leaves
R,  and R,  on opposite sides,  SO that R,  and R,  do not overlap.
A fortiori R,  does not overlap any  ot’her  R,,  and, since  the area  of
R,  is greater than 1, this contradicts Theorem 38.

There are a number of interesting alternative proofs, of which per-
haps the simplest is one  due to Mo-rdell.

If R is convex  and symmetrical about 0, and PI  and Pz  are points
of R with coordinates (xi,  yi) and (lx,,  yz),  then (-x2, -y2), and there-’
fore the point M whose coordinates are #x,-x,)  and $(yi-y&,  is also
a point of R.

The lines  x = 2p/t,  y = 2qjt, where t is a fixed positive integer and
p and q arbitrary integers, divide up the plane into squares, of area
4/t2,  whose corners are (2p/t,  2q/t).  If N(t) is the number of corners in
R, and A the area  of R, then pla:inly 4t-2N(t) -+A  when t + 00;  and

5591 1)
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if A > 4 then N(t) > t2 for large t. But the pairs (~,a) give at most
t2  different pairs of remainders when p and q are divided by t; and
thereforc there are two points PI  and Pz  of R, with coordinates 2p,/t,
2q,/t  and 2p2/t,  2q,/t,  such  that pl-p2 and ql-q2 are both divisible by t.
Hence  the point M, which belongs to R, is a point of A.

3.11. Developments of Theorem 37. There are some further
developments of Theorem 37 which Will  be wanted in Ch. XXIV and
which it is natural to prove here. We begin with a general remark
which applies to a11 the theorems of $5  3.6 and 3.9-10.

We have been interested primarily in the ‘fundamental’ lattice L
(or A), but we cari  see in various ways how its properties may  be
restated as general properties of lattices. We  use L or A now for any
lattice of lines  or points. If it is based upon the points 0, P, Q, as in
$ 3.5, then we cal1 the parallelogram OPRQ the fundamental parallelo-
gram of L or A.

(i) We may  set up a system of oblique Cartesian coordinates with
OP, OQ as axes, and agree that P and Q are the points (1,0) and (0,l).
The area  of the fundamental parallelogram is then

6 = OP.OQ.sinw,

where w is the angle between OP and OQ. The arguments of 5 3.6,
interpreted in this system of coordinates, then prove

THEOREM 39. A necessary  and su$icient  condition that the transforma-
tion (3.6.1) shall  transform  A into itself  is that A = f 1.

THEOREM 40. If P and  Q are any  two points of A, then a necessary
and suficient  condition that the lattice L’ based upon OP and OQ should
be equivalent  to L is that the area  of the parallelogram defined  by OP, OQ
should be equal to that of the fundatiental  parallelogram of A.

(ii) The transformation

x’  = m+py, Y1  = P+SY
(where now cy,  /3,  y, 6 are any  real numbers)t transforms the fundamental
lattice of $3.5 into the lattice based upon the origin and the points
(CI,  y), (8,s).  It transforms lines  into lines  and triangles into triangles.
If the triangle PI  P2  PS,  where Pi  is the point (xi,  yJ, is transformed into
Q1 Q2 QS,  then the areas  of the triangles are

1 1

Xl Y1 1
=I=ii  52 Y2 1

x3 Y3 1
t The 8 of this prtragraph has no connexion with the 6  of (i). which reappears  below.
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ad

%+BYl  Y%+sYl  1

kt3  a2SPy2  YX2fSY2

~,flSY,  Y%+sY,  1

Thus areas  of triangles are multiplied by the constant factor  [&-/$~j;
and the same  is true of areas  in general, since these are sums, or limits
of sums, of areas  of triangles.

We cari  therefore generalize any property of the fundamental lattice
by an appropriate linear transformation. The generalization of Theorem
38 is

THEOREM 41. Suppose that A is any  lattice with origin  0, and  that
R,  satisj?es  (urith  respect to A) the conditions Stated in Theorem 38. Then
the area  of R,  does  not exceed that oj  the fundamental parallelograri  of A.

It is convenient also to give a proof  ab initia  which we state at length,
since we use similar ideas in our pr,oof  of the next theorem. The proof,
on the lines  of (i) above, is practically the same  as that in $ 3.10.

The lines x=&n, y=+
define  a parallelogram ll of area  4n2S,  with (Znf  1)2 points P of A
inside it or on its boundary. We co:nsider the (2n+  1)2  regions R,  corre-
sponding to these points. If A is the greatest value of 1x1  or lyj  on CO,
then a11 these regions lie inside the parallelogram Il’, of area  4(n+A)26,
bounded by the lines

x = &@+A), Y = dAnfA);
and (2n+1)2A  5; 4(n+A)2S.

Hence, making n -+  00,  we obtain

A :< 6.

We need one  more theorem which concerns  the iimiting case A - 6.
We suppose that R,  is a parallelogram; what we prove on this hypo-
thesis Will  be sufficient for our purposes  in Ch. XXIV.

We say  that two points (x, y) and (x’, y’) are equivalent with respect
to L if they have similar positions in two parallelograms of L (SO that
they would coincide if one  parallelogram were moved into coincidence
with the other by parallel displacement). If L is based upon OP and
OQ, and P and Q are (x,, yr)  and ((x2, y2),  then the conditions that the
points (~,y) and (~‘,y’) should be equivalent are that

x1-x  = rx1+sx2, ~‘-y  = ryl+sy2,
where r and s are integers.
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THEOREM 42. If R,  is a parallelogram whose area  is equal  to that of
the fundamental parallelogram of L, and there are no two equivalent points
inside R,,  then there is a point, inside R,  or on its boundary, equivalent
to any  given point of the plane.

We denote the closed region corresponding to R,  by R&
The hypothesis that R,  includes  no pair of e.quivalent  points is equi-

valent to the hypothesis that no two R,  overlap. The conclusion that
there is a point of Rfj  equivalent to any  point of the plane is equivalent
to the conclusion that the RT, caver the plane. Hence what we have to
prove is that,  if A = 6 and the RP  do not overlup,  then the RP  caver  the
plane.

Suppose the contrary. Then there is a point Q outside all RF.  This
point Q lies inside or on the boundary of some parallelogram of L, and
there is a region D, in this parallelogram, and of positive area  r], outside
all RP;  and a corresponding region in every parallelogram of L. Hence
the area  of a11 R,,  inside the parallelogram ll’ of area  4(n+A)26, does
not exceed

4(S-d(n+A+l)2.
It follows that (2n+1)2S < 4(S-7j)(n+A+1)2;

and therefore, making n + CO,

a contradiction which proves the theorem.
Finally, we may  remark that a11 these theorems may  be extended

to space of any  number of dimensions. Thus if A is the fundamental
point-lattice in three-dimensional space, i.e. the set of points (2, y, z)
with integral coordinates, R is a convex  region symmetrical about the
origin, and of volume greater than 8, then there are points of A, other
than 0, in R. In n dimensions 8 must be replaced by 2”.  We  shall
say  something about this generalization, which does not require new
ideas, in Ch. XXIV.

NOTES ON CHAPTER III
$ 3.1. The history of ‘Farey series’  is very curious.  Theorems 28 and 29 seem

to have been stated and proved first by Haros in 1802; see Dickson,  History,
i. 156. Farey did not publish anything on the subject until 1816, when he stated
Theorem 29 in a note in the Philosophical Magazine. He gave no proof,  and it
is unlikely that he had found one,  since  he  seems to have been at the best an
indifferent mathematician.

Cauchy, however, saw  Farey’s statement, and supplied the proof (Ezercices  de
mathénzatipues,  i. 11616).  Mathematicians generally have followed Cauchy’s
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examplc in attributing thc results to Farey,  and the series  Will  no doubt continuc
to bear his name.

Farcy  has a notice of twenty lines  in the Dictio-nary  of national biography,  where
he is described as a geologist. As a geologist he is forgotten, and his biographer
does  not mention the one  thing in his life  which survives.

5 3.3. Hurwitz, Math. Annulen,  44 (1894), 417-36.
3 3.4. Landau, Vorlesungen,  i. 98-100.
$8 3.5-7. Here we follow  the lines  of a lecture by Professor POlya.
8 3.8. For Theorem 36 see Landau, Vorleaungen,  i. 100.
3 3.9. The reader need not pay much  attention to the definitions of ‘region’,

‘boundary’, etc., given in this section if he does  not wish to; he Will not lose by
thinking in terms of elementary regions such as parallelograms, polygons, or
ellipses. Convex  regions are simple regions involving no ‘topological’ difficultios.
That a convex region has an area  was first proved by Minkowski (Geometrie der
Zahlen,  Kap. 2).

$ 3.10. Minkowski’s first proof  Will  be found in Geometrie der Zahlen,  73-76,
and his second in Diophantische Approrimationen,  28-30. Mordell’s proof  was
given in Compositio Math. 1 (1934), 248--53.  Another interesting proof  is that by
Hajos,  A& Univ. Hungaricue  (Szegod), 6 (1934), 224-5: this was set out in full
in the first edition of this book.
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IRRATIONAL NUMBERS

4.1. Some generalities. The theory of ‘irrational number’, as
explained in text books of analysis, falls  outside the range of arith-
metic.  The theory of numbers is occupied, first with integers, then
with rationals, as relations between integers, and then with irrationals,
real or complex, of special forms, such  as

rfs212, r+4(-5),
where r and s are rational. It is not properly concerned with irrationals
as a whole or with general criteria for irrationality (though this is a
limitation which we shall not always respect).

There are, however, many  problems of irrationality which may  be
regarded as part of arithmetic. Theorems concerning rationals may  be
restated as theorems about integers; thus the theorem

‘ra+sa  = 3 is insoluble in rationals’
may  be restated in the form

‘a3d3+bV  = 3bV3  is insoluble in integers’:
and the same  is true of many  theorems in which ‘irrationality’ inter-
venes. Thus
(0 ‘42 is irrational’
means
(QI ‘a2  = 2b2  is insoluble in integers’,

and then appears as a properly arithmetical theorem. We  may  ask
‘is 112  irrational ? ’ without trespassing beyond the proper bounds of
arithmetic, and need not ask ‘what is the meaning of zi2 ?’  We do not
require any  interpretation of the isolated symbol42,  since  the meaning
of (P) is defined as a whole and as being the same  as that of (Q).t

In this chapter we shall be occupied with the problem
‘is z rational or irrational? ‘,

x being a number which, like 42, e, or rr,  makes its appearance naturally
in analysis.

4.2. Numbers known to be irrational. The problem which we
are considering is generally difficult,  and there are few different types
of numbers x for which the solution has been found. In this chapter

t In short 212  may be treated hem as an ‘incomplete symbol’ in the sense  of Principia
Mnthematica.
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we shall confine our attention to a few of the simplest cases, but it
may  be convenient to begin by a rough general statement of what is
known. The statement must be rough because any  more precise  state-
ment requires ideas which we have not yet defined.

There are, broadly, among numbers which occur nat’urally  in analysis,
two types of numbers whose irrationality has been established.

(a) Algebraic  irrationals. The iirrationality of 42 was pfoved  bj
Pythagoras or his pupils, ad later Greek mathematicians extended  the
conclusion to 2/3  and other square roots.  It is now easy to prove that

TJN
is generally irrational for integrad  m and N. Still more generally,
numbers defined by algebraic equations with integral coefficients, unless
‘obviously’ rational, cari  be shown to be irrational by the use of a
theorem of Gauss. We prove this ,theorem  (Theorem 45) in 0 4.3.

(b) The numbers e and rr  and numbers derived from  them. It is  easy
to prove e irrational (see 8 4.7); ad the proof,  simple as it is, involves
the ideas which are most funclamental in later extensions of the theorem.
r is irrational, but of this there is no really simple proof.  Al1 powers of
e or n,  ad polynomials in e or v wit$h  rational coefficients, are irrational.
Numbers such  as

ed2, ed5 > d7eaJ2, log 2

are irrational. We shall return to this subject in Ch. XI ($5  11.13-14).
It was not until 1929 that theorems were discovered which go beyond

those of $9  11.13-14 in any  very important way. It has been shown
recently that further classes of numbers, in which

en, 942“ > en

are included, are irrational. The irrationality of such  numbers as

2?, TP, n42>
or ‘Euler’s constant’t  y is still  unproved.

4.3. The theorem of Pythagoras and its generalizations. We
shall begin by proving

THEOREM 43 (PYTHAGORAS' THEOREM).  42 is irrational.

We shall give three proofs of this theorem, two here and  one  in 5 4.6.
The theorem and its simplest generslizations, though trivial now, deserve
intensive study. The old Greek theory of proportion was based on the

t y= lim
n-+m (

l+i+...+A-logn  .
1



4 0 IRRATIONAL NUMBERS [ch8p. Iv

hypothesis that magnitudes of the same  kind were necessarily com-
mensurable, and it was the discovery of Pythagoras which, by exposing
the inadequacy of this theory, opened the way for the more profound
theory of Eudoxus which is set out in Euclid v.

(a) First proof.  The traditional proof  ascribed to Pythagoras runs
as follows. If 42 is rational, then the equation

(4.3.1) a2  = 2b2

is soluble in integers a, b with (a, b) = 1. Hence a2  is even, and there-
fore a is even. If a = 2c,  then 4c2  = 2b2,  2c2  = b2,  and b is also even,
contrary to the hypothesis that (a, b) = 1.

(b) Second proof.  It follows from (4.3.1) that b [ u2,  and a fortiori that
p 1 a2  for any  prime factor p of b. Hence p 1 a. Since (a, 6)  = 1, this is
impossible. Hence b = 1 and 2 is the square of an integer a, which is
false .

The two proofs are very similar, but there is an important difference.
In (a) we consider divisibility by 2, a given number; in (b) we consider
divisibility by the unknown number b. For this reason (a) is, as we
shall see in a moment, the logically simpler proof,  while (b) lends itself
more readily to generalization.

Similar arguments prove the more general

T HEOREM 44 . ?!$IN  is irrational,  unless  N is the m-th power of an
integer n.

The proofs corresponding to (a) and (b) above may  be stated thus.

(a) Suppose that
( 4 . 3 . 2 ) am  = Nbn”

where (a, b) = 1. If p is any  prime factor of N, then p / an and there-
fore p ; a. If p8 is the highest power of p which divides a, SO that

a = p% P X a,

then p-d” = Nb”.

But p ,/  b and p 1 OL,  and therefore N is divisible by psm  and by no higher
power of p. Since this is true of a11 prime factors of N, N is an mth
power.

(b) It follows from (4.3.2) that b 1 am,  and  p 1 um for every prime factor
p of b. Hence p / a, and from this it follows as before that b = 1. It
Will  be observed that this proof  is almost the same  as the second proof
of Theorem 43. whereas (a) has become noticeably more complex.
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A still more general theorem is

THEOREM 45. If x is a root of an equution
x~+CIX~-lf...+Cm  = 0,

with integral coeficients  of which the.first  is unity, then x is either integral
or irrational.

In the particular case in which the equation is
p-h;’ = 0,

Theorem 45 reduces to Theorem 44.
We may  plainly suppose that c, # 0. We argue as under (b) above.

If x = a/b,  where (a, b) = 1, then

am+clam-lb+...+c,bm  = 0.
Hence  b 1 am,  and from this it follows as before that b = 1.

4.4. The use of the fundamental theorem in the proofs of
Thecirems 4345. It is important, in view of the historical discussion
in the next section, to observe w:hat  use is made, in the proofs of
0 4.3, of the fundamental theorem of arithmetic or of the ‘equivalent’
Theorem 3.

The critical inference,  in either proof  of Theorem 44, is

‘p[am -+ pla’.

Here we use Theorem 3. The same  remark applies to the second  proof
of Theorem 43, the only simplification being that m = 2. In all these
proofs Theorem 3 plays an essential part.

The situation is different in the jkst proof  of Theorem 43, since  here
we are considering divisibility by the special  number 2. We need
‘2 1 a2  + 2 1 a’, and this cari  be proved by ‘enumeration of cases’ and
without an appeal to Theorem 3. Since

‘(2m+1)2  = 4?722+4?7&+1,

the square of an odd number is odd, and the conclusion follows.
Similarly, we cari  dispense with Theorem 3 in the proof  of Theorem

-44 for any  special  m and N. Suppose, for example, that m = 2, N = 5.
We need ‘5ja2 + 51a’. Now any  number a which is not a multiple
of 5 is of one  of the forms

5m+l, 5mf2, 5m+3, 5m+4,
and the squares of these numbers leave remainders

after division by 5.
1, 4, 4, 1
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If m = 2, N = 6, we argue with 2, the smallest prime factor of 6,
and the proof  is almost identical with the first proof  of Theorem 43.
With m = 2 and

N = 2, 3, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 17, 18

we argue with the divisors

2, 3, 5, 2, 7, 4, 2, 11, 3, 13, 2, 3, 17, 2,

the smallest prime factors of N which occur in odd multiplicity or, in
the case of 8, an appropriate power of this prime factor. It is instructive
to work through some of these cases; it is only when N is prime that the
proof  runs exactly according to the original pattern, and then it becomes
tedious for the larger values of N.

We cari  deal similarly with cases such  as m = 3, N = 2, 3, or 5; but
we confine ourselves to those which are relevant in $5  4.5-6.

4.5. A historical digression. There is a curious  historical puzzle
on which the  preceding discussion throws a good deal of light.

It is unknown when, or by whom, the ‘theorem of Pythagoras’ was
discovered. ‘The discovery’, says Heath,t ‘cari  hardly have been made
by Pythagoras himself, but it was certainly made in his school.’ Pytha-
goras  lived about 570-490 B.C. Democritus, born about 470, wrote ‘on
irrational lines  and solids’, and ‘it is difficult  to resist the conclusion
that  the irrationality of 42 was discovered before Democritus’ time’.

It would seem that no extension of the theorem was made for over
fifty years. There is a famous  passage in Plato’s Theaetetus in which it
is stated that Theodorus (Plato’s teacher)  proved the irrationality of

113,  2/5,...,

‘taking all the separate cases up to the root of 17 square feet,  at which
point, for some reason, he stopped’. We have no accurate information
about this or other discoveries of Theodorus, but Plato lived 429-348,
and it seems reasonable to date this discovery about 410-400.

The question how Theodorus proved his theorems has exercised the
ingenuity of every historian. It would be natural to conjecture that he
used some modification of the ‘traditions1 method of Pythagoras, such
as those which we discussed in the last section. In that case, since  he
cannot  have known the fundamental theorem,$  and it is unlikely that

t Sir Thomas Heath, A manual of Ufeek mathematics, 54-55. In what follows passages
in inverted commas, unless attributed to other writers, are quotations from  this book
OP from  the Rame  writer’s  A history  of Greek mathematics.

$ See Ch. XII, 5 12.5, for some  further discussion of this point.
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he knew even Euclid’s Theorem 3, he must have argued much  as we
agued  at the end of 5 4.4.

Some historians, however, such  as Zeuthen and Heath, have objected
to this conjecture on other grounds. Thus Heath remarks that
‘the objection t;o  this conjecture as to the nature of Theodorus’ proof
is that it is SO easy an adaptation OS the traditional proof  regarding. 42
that it would hardly be important enough to mention as a new discovery’

and that

‘it would be clear, long before 417 was reached, that it is generally
applicable . . .’ ;

and regards these objections as ‘ditlicult  to meet’.

Zeuthen assumes
‘(a) that the method of proof  used by Theodorus must have been

sufficiently original to cal1  for special notice from Plato, and (a) that
it mùst have been of such  a kind that the application of it to each
surd required to be set out separately in consequence  of the variations
in the numbers entering  into the proofs’;

and considers that

‘neither of these conditions is satisfied by the hypothesis of mere
adaptation to 43, 115,... of the traditional proof  with regard to 112’.

On these grounds he puts forward an entirely different hypothesis about
the nature of Theodorus’ proof.

The method of proof  suggested by Zeuthen is most interesting,t  and
his hypothesis may  be correct. But it should be clear by now that (what-
ever the historical truth may  be) the  reasons advanced by Zeuthen and
Heath are quite  unconvincing. TO prove Theodorus’ theorems, as we
proved them in 9 4.4, and without assuming any  general theorem such
as Theorem 3, requires a good deal more than a ‘trivial’ variation of
the Pythagorean proof.  If Theodorus proved them thus, then his work
fully satisfied Zeuthen’s criteria; ii; was certainly original enough to
‘call  for special notice from Plato’, and it did require ‘to be set out
separately’ in every case. By the time Theodorus had finished with 17,
he may  well  have been quite  tired; it would be what he had done  and
not what he had not done  that should fil1  us with surprise.

4.6. Geometrical proofs of the irrationality of 2/2  and 115. The
proofs suggested by Zeuthen vary from number to number, and the
variations depend at bottom on the form of the periodic continued

t We  give two examples  of it in 8 4.6.
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fractiont which represents 4N.  We  ts,ke  as typical the simplest case
(N = 5) and the lowest case (N = 2).

(a) N = 5. We  argue in terms of

2 = 4(1/5-l).
T h e n x2= l - x .
Geometrically, if A B = 1, AC = x, then

AO  = AB. CB

A Cl C3 cz c B
l I 4

FI~. 4

and AB is divided ‘in golden section’ by C. These relations are funda-
mental in the construction of the regular pentagon inscribed in a circle
(Euclid iv. 11).

If we divide 1 by x, taking the largest possible integral quotient,, viz.
l,$  the remainder is l-x = x2.  If we divide x by x2,  the quotient is
again  1 and the remainder is x-x 2 = x3.  We next divide x2  by x3,  and
continue the process indefinitely; at each  stage the ratios of the number
divided, the divisor, and the remainder are the same.  Geometrically,
if we take CC, equal and opposite to CB, CA is divided at C, in the
same  ratio as AB at C, i.e.  in golden section; if we take C,C, equal and
opposite to Ci A, then C, C is divided in golden section at C2; and SO on.11
Since  we are dealing  at each  stage with a segment divided in the seme
ratio, the process cari  never end.

It is easy to see that this contradicts the hypothesis of the rationality
of x. If x is rational, then AB and AC  are integral multiples of the same
length 6,  and the same  is true of’

Cl  C = CB = AB-AC, C’,C,  = AC, = AC-C,  C, . ..>
i.e. of a11  the segments in the figure. Hence  we cari  construct  an infinite
sequence  of descending integral multiples of 6;  and this is plainly im-
possible.

(b) N = 2. This case is best treated by a two-dimensional argument.
Let AB, AC be two sides  of a unit square ABDC; take BD, = AB

along  the diagonal BC; and let the perpendicular to BC at Dl meet
AC in B,. The elementary properties of triangles show that

AB, = B,Dl  = DIC.
-f  See Ch. X, 8 10.12. $ Since)<z<  1.
11  CaC3  equal and opposite to C*C,  C3C,  equal rnd opposite to C,C1,...  . The New

segments defined are measured alternately  to the left and the right.



4.6 (46)] I R R A T I O N A L  N U M B E R S 45

We now complete the square A, B, Dl C and repeat the construction,
taking &Dz = 4% B, D3  = A, B,, . . . .
as indicated in the figure. Each square constructed is dissected in the
same  proportions, and the process cannot end.

A
FI~. 5

If 42 were rational, i.e. if AC and BC were integral multiples of the
same  length 6,  the same  would be true of

A,B,  = OIC=  B C - B D , =  B C - A C
and of B, C = AC-AB, = AC-B,  Dl  = AC-A, B,,
and so, by repetition of the argument, of all the segments in the figure;
and plainly  we should arrive at the same  contradiction as before.

4.7. Some more irrational numbers. We know, after Theorem
44, that

are irrational. After Theorem 45,

x = %Q+d3
is irrational, since it is not an integer and satisfies

24-10x2-+1  = 0.
We cari  construct  irrationals freely by means  of decimals or continued
fractions, as we shall see in Chs. IX and X; but it is not easy, without
theorems such  as we shall prove in $Q 11.13-14, to add to our list many
of the numbers which occur naturahy  in analysis.
THEOREM 46. log,, 2 is irrational.

This is trivial, since log,,2  = ;
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involves Zb = 10a, which is impossible. More generally log,m  is irra-
tional if m and n are integers, one  of which has a prime faotor which
the other lacks.

THEOREM 47. e is irrutionul.

Let us suppose e rational, SO that e = a/b  where a and b are integers.
If k > b and

a = k!
(
e-l-i!--1-

l! 2!

then b / k! and 01  is an integer. But

o<cY=
&+&k+z)+*.*  < &+h2+...  =;

and this is a contradiction.
In this proof,  we assumed the theorem false and deduced that 01  was

(i) integral, (ii) positive, and (iii) less than one, an obvious contradiction.
We prove two further theorems by more sophisticated applications of
the same  idea.

For any  positive integer n, we Write

f =f(x) = xn(y;x)m  = ; 2 c,xm,
?Tl=Tb

where the c, are integers. For 0 < x < 1, we have

(4.7.1) 0 <f(x) < -&.

Againf(0)  = 0 andfcm)(0)  = 0 ifm < n or m > 2n. But, if n < m < 2%

f(q))  =  !Y  c
n! m’

an integer. Hence f(x) and ail  its  derivatives take integral values at
x = 0. Sincef(l-z)  = f(x), the same  is true at x = 1.

THEOREM 48. eu is irrational  for every rationd  y # O.
If y = hjk and eu is rational, SO is e kg = eh.  Again,  if e-h is rational,

SO is eh. Hence it is enough to prove that, if h is a positive integer, eh
cannot be rational. Suppose this false, SO that eh = a/b  where a, b are
positive integers. We Write

Jïyx)  = h2nf(x)-h2”-1f1(x)+...-hj(2n-1)(x)+f(2n)(x),

SO that P(0) and P(I)  are integers. We  have

g {ehzF(x))  = @{hF(x)  +P’(x))  = h2n+1ehzf(x).
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Hence bj, 2n+1ehzf(x)  dz  = b[eh”F(x)]i  = aY(lbF(O),
0

an integer. But, by (4.7.1),
1

0 < b
I

bh2nehhzn+*ehzf(x)  dz <  7 <  1
0

for large enough n, a contradiction.

THEOREM 49. T and 7~~ are irrational.

Suppose n2  rational, SO that  ~2 = a/b,  where a, b are positive integers.
We  Write

G(x)  = b”(~2”f(x)-n2”-2f’(x)+~2n-4f(4)(x)-...+(-l)nf(2n)(x)},
SO that  G(0) and G(1) are integers. We  bave

& (G’(x)sin xx - ~G(x)cos m:}

= {G”(x)+n2G(.‘)}‘c sinnx = bn#+2f(x)sin~x

Hence
= 7r2un  sin 7rxf(z’).

1

7f
s

an  sin 77x f(x) dx  = G’(x)sin--  G(x)cos~x 1 ’ = G(O)+G(l) >7r
0 0

an integer. But, by (4.7.1),

O<J un  sin 7rx f(x)  dx < F;  < 1
0

for large enough n, a contradiction.

N O T E S  O N  C H A P T E R  I V

§ 4.2. Thc irrationality of e and 7r was proved by Lambert in 1761; and that
of e n by Gelfond in 1929. See the notes on Ch. XI.

$5 4.3-6. A readcr intorested in Greek mathematics Will  find what biblio-
graphical  information ho  requires in Heath’s books referred to on p. 42.

We do not givc spccific references,  except  when we quote Heath, nor attempt
to assign Greek theorcms to their real discoverers. Thus we use ‘Pythagoras’
for ‘some mathematician of the Pythagorean school’.

5 4.3. Thoorem 45 is provcd, in a more general form, by Gauss, D.A.,  $ 42.
5 4.6. Our construction in the case N := 2 follows Rademacher and Toeplitz,

15-17.
3 4.7. Our proof  of Theorcm 48 is based on that of Hermite (autres,  3, 154)

and our proof  of Theorem 49 on that of Niven (Bulletin Anzer.  Math. Soc. 53
(1947), 509).
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CONGRUENCES AND RESIDUES

5.1. Highest common divisor and least common multiple. We
have already defined the highest common divisor (a, b) of two numbers
a and b. There is a simple formula for this number.

We denote by min(x,  y) and max(x,  y) the lesser  and the greater of
z and y. Thus min(l,2)  = 1, max(l,l) = 1.

THEOREM 50. If a=JJp,OL (a 2 at

and b = & pfi @ 2 Oh

then (a, b)P=  fl pm’@apfi.

This theorem is an immediate :onsequence of Theorem 2 and the
definition of (a, b).

The least common multiple of two numbers a and b is the least positive
number ,which  is divisible by both a and b. We denote it by {a, b}, SO that

al{a,b},  . b l{a,b},
and {a, b} is the least number which has this property.
THEOREM 51. In the notation of  Theorem 50,

{a, b} = F pmax@@.

From Theorems 50 and 51 we deduce

THEOREM 52 :
ab

w4 = (a,b)’

If (a, b) = 1, a and b are said to be prime to one  another or coprime.

The numbers a, b, c ,..., k are said to be coprime if every two of them
are coprime. TO say  this is to say  much  more than to say  that

(a,b,c ,...,  k) = 1,
which means  merely that there is no number but 1 which divides a11
of a, b, c ,...,  k.

t The symbol rJf(P)

denotes a product extanded over  a11  prime values of p. The symbol

rIff(P)
PI”

denotes a product extended over a11  primes which divide m.  In the first formula of
Theorem 50, (Y  is zero  unless p 1 a (SO  that the product is really a finite product). We
might equally well write a=J-Jpm

in this case every OL  would be be positive.
PIO



5.11 C O N G R U E N C E S  A N D  R E S I D U E S 49

We  shall sometimes say  that ‘a and  b have no common factor’ when
we mean  that they have no common factor greater than 1, i.e.  that
they are coprime.

5.2. Congruences and classes, of residues. If m is a divisor of
x-a, we say  that x is congruent to a to modulus m, and Write

z E a (modm).
The definition does not introduce any  new idea, since ‘x = a (modm)’
and ‘?n  1 x-a’ have the same  meaning, but each  notation has its ad-
vantages. We have already used the word ‘modulus’ in a different sense
in $ 2.9, but the ambiguity Will  not cause  any  confusi0n.t

By x + a (modm) we mean  that x is not congruent to a.
If x E a (modm), then a is called a residue of x to modulus m. If

0 < a < m-l, then a is the least residue$  of x to modulus m. Thus two
numbers a and b congruent (modm) have the same  residues (modm).
A class of residues (modm) is the class of a11 the numbers congruent to
a given residue (modm), and every member of the class is called a
representative of the class. It is clear that there are in a11 m classes,
represented  by 0, 1, 2 ,...,  m-l.

These m numbers, or any  other set of m numbers of which one  belongs
to each  of the m clas’ses,  form a complete system of incongruent residues
to modulus m, or, more shortly, a complete system (modm).

Congruences are of great practical importance in everyday life. For
example, ‘today is Saturday’ is a congruence property (mod 7) of the
number of days which have passed since some fixed date. This property
is usually  much  more important than  the actual  number of days which
have passed since, say,  the creation. Lecture lists or railway guides
are tables of congruences; in the lecture list the relevant moduli are
365, 7, and 24.

TO find the day of the week on which a particular event falls is to
solve a problem in ‘arithmetic (mod7)‘. In such an arithmetic con-
gruent numbers are equivalent, SO  that the arithmetic is a strictly
finite  science, and a11  problems in it cari  be solved by trial. Suppose,
for example, that a lecttire  is given on every alternate day (including
Sundays),  and that the first lect.ure  occurs on a Monday. When Will  a
lecture first fa11  on a Tuesday ? If this lecture is the (x+l)th then

2x G 1 (mod7);
t The dual use bas a purpose  because the notion of a ‘congruence with respect to

a modulus of numbers’ occurs  at a later  stage in the theory, though we  shall not use it
in this book. $ Strictly, least non-negative  residue.

6581 E
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and we find  by tria1 that the least positive solution is
x = 4.

Thus the fifth lecture Will  fall on a Tuesday and this Will  be the first
that Will  do SO.

Similarly, we find  by tria1 that the congruence
x2  z 1 (mod 8)

has just four solutions, namely
x E 1, 3, 5, 7 (mod8).

It is sometimes convenient to use the notation of congruences even
when the variables which occur in them are not integers. Thus we may
Write x=y(modz)

whenever x-y is an integral multiple of z, SO that, for example,

ij E $ (mod l), -T G T (mod2n).

5.3. Elementary properties of congruences. It is obvious that
congruences to a given modulus m have the following properties:

(i) a - b + b E a,
(ii) a G b . b F c + a s c,
(iii) a = a’ . b E b’ + a+b G u’+b’.

Also, if a E a’, b F b’,... we have

(iv) ka+Zb+...  s ka’+Zb’+  . . . .
(v) a2 F a’2, u3 E a’3,

and SO on; and finally, if +(a,  b,...) is any  polynomial with integral
coefficients, we have

(vi) +(a, b ,...)  zz $(a’, b’,... ).
THEOREM 53. If a G b (modm) und  a 5 b (modn), then

a E b (mod{m,  w}).
In purticulur,  if (m, n)  = 1, then

a E b (modmn),
This follows from Theorem 50. If pc is the highest power of p which

divides {WL,  n}, then pc 1 m or pc 1 n and SO pc 1 (a-b). This is true for every
prime factor of {m,n}, and SO

a c b (mod (m,  n}).
The theorem generalizes in the obvious manner to any  number of
congruences.
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5.4. Linear congruences. The properties (i)-(vi) are like  those of
equations in ordinary algebra, but we soon meet  with a difference. It
is not true that ka=ka’ + a-a’;

for example 2.2 E 2.4 (mod4),

but 2 $ 4 (mod4).

We consider next what is true in this direction.

THEOREM 54. lj (k,m)  = d, then

ka F ka’ (modm) + a E a’ mod: ,
( 1

and conversely.

Since  (k,m)  = d, we have
k = k,d, m = ml& (k,,mJ = 1.

T h e n ka-ka’ ki(a-a’)-zz -9m ml
and, since  (k,,mJ = 1,

m / ka-ka’ E: ml  j a-a’.?

This proves the theorem. A particular case is

THEOREM 55. If (k,m)  = 1, then

ka = ka’ (modm) + a = a’ (mod m)
and conversely.

THEOREM 56. If a,, a2,..., a, is a complete system of incongruent
residues (modm) and (k, m) = 1, then ka,, ka *,...,  ka, is also such  a
system.

For ka,-kaj = 0 (modm) implies ai-ai  E 0 (modm), by Theorem
65, and this is impossible unless i = j. More generally, if (k,  m) = 1,
then ka,+Z (r = 1,2,3 ,...,  m)

is a complete system of incongruent residues (modm).

THEOREM 57. If (k,m) = d, then the congruence

(5.4.1) kx G 1 (modm)

is soluble if and only if d 11.  It has then just d solutions. In particular,
if (k, m) = 1, the congruence has always  just one  solution.

The congruence is equivalent to

kx-wzy  = 1,
t ‘E’ is the symbol  of logical  equivalence:  if P and Q are propositions, then P s Q

ifP+QandQ+P.
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SO that the result is partly contained in Theorem 25. It is naturally
to be understood, when we say  that the congruence has ‘just d’ solu-
tions, that congrue& solutions are regarded as the same.

If d = 1, then Theorem 57 is a corollary of Theorem 56. If cl > 1,
the congruence (5.4.1) is clearly insoluble unless d 11.  If d 1 Z, then

m=dm’, k = dk’, 1 = dl’,

and the congruence is equivalent to
(5.4.2) k’x E Z’ (modm’).

Since (k’,m’) = 1, (5.4.2) bas  just one  solution. If this solution is

z f t (modm’),

then x = t+ym’,

and the complete set of solutions of (5.4.1) is found by giving y a11
values which lead to values of t+ ym’ incongruent to modulus m. Since

t+ym’  E t+zm’(modm)  s m 1 m’(y-z)  E d j (y-z),
there are just d solutions, represented by

t, t+m’,  t+2m’,  . . . . t+(d-1)m’.
This proves the theorem.

5.5. Euler’s function  +(m).  We  denote by 4(m)  the number of
positive integers not greater than and prime to m, that is to say  the
number of integers n SUC~  that

O<n<m, (n, m) = 1.t
If a is prime to m, then SO is any  number x congruent to a (modm).
The’re  are $(m) classes of residues prime to m, and any  set of +(m)
residues, one  from each  class,  is called a complete set of residues prime
to m. One  such complete set is the set of +(m)  numbers less than and
prime to m.

THEOREM 58. If a,, u2,..., q(m) is a complete set of residues prime to
m, and  (k,m) = 1, then

La,,  ka2, . . . . kq,,,)
is also such  a set.

For the numbers of the second set are plainly a11  prime to m, and,
as in the proof  of Theorem 56, no two of them are congruent.

THEOREM 59. Suppose that (m,m’)  = 1, and  that a runs through a
complete set of residues (modm), and a’ through a complete set of residues
(modm’). Then a’mfam’ runs through a complete set of residues
(modmm’).

$ n can  be equal to WL  only when n = 1. Thus d(l)  = 1.
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There are mm’ numbers a’mfam’.  If

53

a;m+a,m’  E ainz+a,m’  (modmm’),

then a, m’ z a2  m’ (mod m),

and SO a, G a2  (modm);

and similarly a; G aa  (modm’).

JIence  the mm’  numbers are all incongruent and form a complete set of
residues (mod mm’).

A function f (m) is said to be multiplicative if (m, m’)  = 1 implies

f(mm’) = f(m)fW.
THEOREM 60. d(n)  is multiplicative.

If (m,m’)  ==  1, then, by Theorem 59, a’m+am’  runs through a com-
plete set (modmm’) when a and a’ run through complete sets (modm)
and (mod m’) respectively. Also

(a’m+am’,mm’) = 1 E (a’m+am’, m) = 1 . (a’,m+am’,  m’) = 1

E (am’, mj = 1 . (a’m.,  m’) = 1

E(a,m)  =.  1 . (a’,m’) = 1.

Hence the +(mm’)  numbers less than and prime to mm’ are the least
positive residues of the $(m)$(m’) va ues1 of a’m+am’  for which a is
prime to m and a’ to m’; and therefore

+(mm’)  = d(mMm’).
Incidentally we have proved

THEOREM 61. If (m, m’) = 1, a runs through a complete set of residues
prime to m, and a’ through a complete set of residues prime to m’, then
am’+a’m  runs through a complete set of residues prime to mm’.

We cari  now find the value of $(,m)  for any  value of m. By Theorem
60, it is sufficient to calculate d(m)  when m is a power of a prime. Now
there are pc-l  positive numbers less t,han  pc,  of which pc-l-l  are
multiples of p and the remainder prime to p. Hence

$(p”)  = pc-l-(pc-*-l)  = pc  1-k  ;
( 1

and the general value of 4(m)  follows from Theorem 60.

THEOREM 62. If m = n pc,  then

+Cm)  = m ‘n  (l- j.).
Plm
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We shall also require

THEOREM 63. &544  = WL.

If m = n pc,  then the divisors of m are the numbers d = T]i  pc*,
where 0 < c’  < c for each  p; and

o(m) = 2 W) = 1 fl  W’)  = Il {l+~(p)+~(p2)+...+~(pc)},dlm PA’ P

by the multiplicative property of 4(m). But

l++(p)+...+$(pc)  =  ~+(P-l)+p(p-l)+...+Pc-‘(P-l)  =  P”,
SO that Oim)  = npc = m.

11

5.6. Applications of Theorems 59 and 61 to trigonometrical
sums. There are certain trigonometrical sums which are important in
the theory of numbers and which are either ‘multiplicative’ in the sense
of 5 5.5 or possess very similar properties.

We writei e(T)  = ezniT:

we shall be concerned only with rational values of T. It is clear that

when m EZ  m’  (modn). It is this property which gives trigonometrical
sums their arithmetical’importance.

(1) Multiplicative property of Gauss’s sum. Gauss’s sum, which is
particularly important in the theory of quadratic residues, is

n-1
,'j'(m,  n) = 2 $nih'mln  =

h=o.

Since

for any  r,  we have ~~)~e~)

whenever h, G h, (modn). We may  therefore Write

S(m,n)  = 2 ef$),
h(n)

the notation implying that h runs through any complete system of
t Throughout this section e6 is the exponential function e5 = 1 +If  . . . of the complex

variable 5.  We assume a knowledge of the elementary properties of the exponential
function.
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residues modn. When there is no risk of ambiguity, we shall Write  h
instead of h(n).
THEOREM 64. If (n,n')  = 1, then

X(m,  nn’) = #(mn’, n)X(mn,  n’).
Let h, h’ run through complete systems of residues to modulus n, n’

respectively. Then, by Theorem 59,

H = hn’+h’n
runs through a complete set of residues to modulus nn’. Also

mH2  = m(hn’+h’n)3  G *mh%‘2+mh’%2  (modnn’).
Hence

S(mn’,  n)X(mn,  n’) = (7 e(ff*))  [c  e(!!!!))

hi-’  e(m(hZnnlç+h’2n2))

hfh!

(2) Multiplicative property of Ramunujan’s  sum. Ramanujan’s sum is

c,(m)  = 2 e($+
n*(q)

the notation here implying that h runs only through residues prime to
q. We shah  sometimes Write  h instead of h*(q) when there is no risk
of ambiguity.

We’ may  Write  c,(m) in another form which introduces a notion of
more general importance. We cal1 p a primitive q-th root of unity if
pQ  = 1 but pr  is not 1 for any positive value of r less than q.

Suppose that p* = 1 and that r is the least positive integer for which
p’ = 1. Then q = kr+s,  where 0 :< s < r. Also

p8 = pc!-kr  = 1,

SO that s = 0 and r 1 q. Hence
THEOREM 65. Any  q-th root of u.nity  is a primitive r-th root, for some

divisor r of q.
THEOREM 66. The q-th roots of qmity  are the numbers

(h = O,l,...,  q-l),

and a necessary and suficient condition that the root shodd  be primitive
is thut h should be prime to q.
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We  may  now Write  Ramanujan’s sum in the form

c,(m)  = 2 Prn,
where p runs through the primitive qth roots of unity.

THEOREM 67. .Zf (q,q’)  = 1, then

F o r
c&7,@4  = c,(m)c,4m).

c,(mk&)  = ,h  +(i+$))  = ,h. e(m(hqpth’q)]  = c,.(m),
> ’

by Theorem 61.

(3) Multiplicative property of Kloosterman’s sum. Kloosterman’s sum
(which is rather more recondite) is

S(u,v,n)  = c er*),

where h runs through a complete set of residues prime to n, and h is
defined by

hh G 1 (modn).
Theorem 57 shows us that, given any  h, there is a unique il (modn)
which satisfies this condition. We  shall make no use of Kloosterman’s
sum, but the proof  of its multiplicative property gives an excellent
illustration of the ideas of the preceding sections.

THEOREM 68. if (n,n')  = 1, then
S(u,v,n)S(u,  v’,n’)  = X(24,  V,nn’),

where V = vn’2+v’n2.

I f hiE  s 1 (modn), h’i’ E 1 (modn’),
then

(5.6.1) X(u,~,n)S(u,v’,n’)  = c e~~+uh’~v’d’)
h,h’

where H = hn’+h’n, K = &n’+v’fi’n.
By Theorem 61, H runs through a complete system of residues prime
to nn’. Hence,  if we cari  show that
(5 .6 .2) K c Vn  (modnn’),
where H is defined by

HH E 1 (modnn’),
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then (5.6.1) Will  reduce to

X(?L,  w,n)S(u,v’,n’)  = 2 e”‘v”)  = X(u,  V,nn’).
H

N o w (hn’+h’n)H  = H.H  E 1 (modnn’).

Hence hn’n  E 1 (modn), n’fl  E likn’li E fi (modn),

and SO

(5.6.3) n’28  E n’i (modnn’).

Similarly we see that
(5.6.4) nzR G ni (modnn’);

and from (5.6.3) and (5.6.4) we deduce
VH = (m’2+v’n2)H  E vn.‘i+v’ng’  G K (modnn’).

This is (5.6.2),  and the theorem follows.

5.7. A general principle. We return for a moment to the argu-
ment which we used in proving Theorem 65. It Will  avoid a good deal
of repetition later if we restate  the theorem and the proof  in a more
general form. We use P(a) to denote any  proposition asserting a
property of a non-negative integer cc.

THEOREM  69 .  1f

(i) P(a) and P(b) imply P(u+b)  und P(u-b), for ewery  a und b (prp-
vided, in the second case, thut b < uj,

(ii) r is the leust  positive integer for which P(r) is true,
then

(a) P(kr)  is true for every non-negative integer k,
(b) uny  q for which P(q) is true is a multiple of r.
In the first place, (a) is obvious.
TO prove (b) we observe that 0 < : r  < q, by the definition of r.  Hence

we cari  Write q’= kr+s, s = q-kr,

,where  k 3 1 and 0 < s < r.  But P(r) + P(kr), by (a), and

P(q) . P(kr)  + P(s),
by (i). Hence, again  by the definition of r,  s must be 0, and q = kr.

We cari  also deduce Theorem 69 from Theorem 23. In Theorem 65,
P(u) is pa = 1.

5.8. Construction of the regular polygon of 17 sides.  We con-
clude  this chapter by a short excursus on one  of the famous  problems
of elementary geometry, that of the construction of a regular polygon
of n sides,  or of an angle cx  = Prr/n.
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Suppose that (n,, n,) = 1 and that the problem is soluble for n = n1
and for n = n2. There are integers ri  and r2 such  that

r,n,+r,n,  = 1

or
27r 2n 27r

r1ci2+r*a1  = rl-+r2-  = -.
122 n1 nl n2

Hence, if the problem is soluble for n = n, and n = n2, it is soluble
for n = n,n,. It follows that we need only consider cases in which n
is a power of a prime. In what follows we suppose n = p prime.

We cari  construct 01  if we cari  construct COS~  (or sincu);  and the
numbers coskorfisinkcu  (k = 1,2,...,n-1)

are the roots of

xn-1- = Pi+X=-2+...+1  = 0.
x - l

Hence we cari  construct 01  if we cari  construct the roots of (5.8.1).
‘Euclidean’ constructions, by ruler and compass,  are equivalent

analytically to the solution of a series  of linear or quadratic equati0ns.t
Hence our  construction is possible if we cari  reduce the solution of
(5.8.1)  to that of such  a series  of equations.

The problem was solved by Gauss,  who proved (as we stated in 5 2.4)
that the reduction is possible if and only if n is a ‘Fermat  prime’1

n=p=2P+1=Fh.

The first five values of h, viz. 0, 1, 2, 3, 4, give

n = 3, 5, 17, 257, 65537,

a11 of which are prime, and in these cases the problem is soluble.
The constructions for n = 3 and n = 5 are familiar. We give here

the construction for n = 17. We  shall not attempt any systematic
exposition of Gauss’s  theory; but this particular construction gives a
fair example of the working of his method, and should make it plain
to the reader that (as is plausible from the beginning) success is to be
expected when n = p and p- 1 does not contain any prime but 2.
This requires that p is a prime of the form Zm-j-1,  and the only such
primes are the Fermat  primes.11

Suppose then that n = 17. The corresponding equation is

(5.8.2) X17-1
x - l

= .16+x’s+  +1 = 0.. .  .

+ sec 5 11.5. : Sec $ 2.5. (1  See $ 2.5, Theorem It.
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We  Write COS kafi  sin ka,

SO that the roots of (5.8.2) are
(5.8.3) x = El>  E2  )...,  Cl($.

From these roots we form certain sums,  known as periods, which are
the roots of quadratic equations.

The numbers 3m  (0 < m < 15)

are congruent (mod 17),  in some orcler,  to the numbers E = 1, 2,...,  16,t
as is shown by the table

m = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,

k = 1, 3, 9, 10, 13, 5, 15, 11, 16, 14, 8, 7, 4, 12, 2, 6.

We  define  x1  and x2  by

x1 =  2 Ek  =  E1+E3+fi13+E15+f10+~~+~q+~2>m evcn
x2= cc k  =  E3+Elo+~rs+Ell+E14+~,+~~2+Eô;modd

ana Yl,  Y29  Y39  Y4 bY
Y1=  2 Ek  = El+E13+E16+-E4>

m-O(rnod  4)

Y 2  =m;2c;od4JEk = E9+E15+E8+E2,

Y3 =TnEl(,d 4jÉk  = E3+é5+E14+E12>

Y4=  1mr3cmod4jEk  = E10+Ell+~7+E6’

Since EkfE17-k  == 2 COS ka,
we have x1  = ~(COS  a + COS 801 + COS 4ci+  COS 2a),

x2  = ~(COS  3a+  COS 7%  + COS 5~  + COS 609,
y1 = S(cos  a + COS 4a), y2 = S(cos  8ci + COS 2(Y),
y3 = 2(cos  3a+  COS 5CY), y4 = ~(COS  70~  + COS GcY).

We  prove first  that x1  and x2  are the roots of a quadratic equation
with rational coefficients. Xince  the roots of (5.8.2) are the numbers
(5.8.3), we have

Again,

x1+x2 =  2k~lCosl:a  =  Tkclck  = --la

x1  x2  = 4(cos  c% + COS &Y+ COS 4,x  + COS 201)  x
x (CO~I  3a  + COS ~CY  + COS Oa + COS 601).

If we multiply out the right-hancl s.icle  and use the identity
(5.8.4) 2cosmacosnc~ = cos(m+n)a+cos(m-n)or,

t In fact  3 is a ‘primitive mot of 17’ in the sense  which Will be explained in § 6.8.
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we obtain x1x2  =  4(x,+x,) =  - 4 .
Hence x1  and x2  are the roots of
(5.8.5) x2+x-4  = 0 .
Also

cosa+cos2a  > 2cos&r = 112  > -cos801, cos4ci  >  0 .
Hence x1  > 0 and therefore

(5.8.6) Xl > x2.
We prove next that yl,  y2  and y3,  y4  are the roots of quadratic equa-

tions whose coefficients are rational  in x1  and x2. We have

and,  using  (5.8.4) again,
Yl+Y2  = Xl>

y1  y2  = 4(cos  a + COS 4a)(cos  Sa + COS 2ci)

=  2$coska  =  - 1 .
k=l

Hence yl,  y2  are the roots of
(5.8.7)’ 2/2-x,  y-l = 0;

and  it is plain that
(5.8.8) Y1 > Y2.

Similarly Y3+Y4  = x29 Y3Y4  = -1,
and SO y3,  y4  are the roots of
(5.8.9) y2-x2  y-l = 0,
and
(5.8.10) Y3 > Y4*

Finally 2cosci+2cos4a  = yl,
4 COS iy COS 401  = 2(cos  5afcos  3a) = y3.

Also COS 01  > COS 401.  Hence z1 = 2 COS 01  ad z2 = 2 COS 401  are the roots
of the quadratic
(5.8.11) .z-y1z+y3  =  0
and
(58.12) 21  > 3.

We cari  now determine z1 = 2 cosar by solving the four quadratics
(5.8.5), (5.8.7), (5.8.9),  and (5.8.11),  and remembering the associated
inequalities. We obtain

~COS~  = i(-1+2/17+&34-2&7))f

+~,l{68+12\117-16,/(34+2~17)-2(1-\117)~(34-2\1~7)),



6.81 CONGRUENCES AND RESIDUES ô l

an expression involving only rationals and square roots. This number
may  now be constructed by the use of the ruler  and compass  only, and
SO oi may  be constructed.

There is a simpler geometrical construction. Let C be the least
positive acute angle such  that

tan4C  := 4,

SO that C, 2C,  and 4C are a11 acute. Then (5.8.5) may  be written
x2+4xcot  4C’-4  = 0.

FI G .  6

The roots of this equation are
2 tan ZC, -2cot2c.

Since  x1  > x2,  this gives
x1  = 2tan2C, x2  = -2cot 2c.

Substituting in (5.8.7) and (5.8.9) and solving, we obtain
y1  = tan(C+$n), y3  = tan C,
y2  = tan(C-&r), y4  = -cet c.

Hence

(5.8.13)
i
~cos~~+~cos~cL=~~== tanC,
2 COS 30r. 2 COS 501 = 2 COS :!a + 2 COS 801 = y2  1 tan(  C-in).

Now let OA, OB (Fig. 6) be two perpendicular radii of a circle. Make
OI one-fourth of OB and the angle OIE (with E in OA) one-fourth of
the angle OIA. Find  on A0 produced a point F such  that EIF = $TT.
Let the circle on AF as diameter tut OB in K, and let the circle whose
centre is E and radius EK tut OA  in N3 and N5 (N3 on OA, Ns  on A0
produced). Draw N,P,,  N5P5  perpendicular to OA to tut the circum-
ference of the  original circle in P3  and PS.



62 CONGRUENCES AND RESIDUES

Then OIA  = 4C and OIE = C. Also

[Chap. V

2cosAOP,+2cosAOP,  = 2 ON,--  ON, 40E- -OA
OE = t.anC

OA=Oi  '
ON, ON,2cosAOP,.2cosAOP,  = -4 ~ = -40K2-OA OA

ZZZ -4g = -g = tan(C-in).

Comparing these equations with (5.8.13),  we see that AOP,  = 3a and
AOP,  = 501.

It follows that A, P,,  P5 are the first, fourth, and sixth vertices  of a
regular polygon of 17 sides  inscribed in the circle;  and it is obvious how
the polygon may  be completed.

NOTES ON CHAPTER V
3 5.1. The contents of this chapter are a11 ‘classical’ (except  the properties of

Ramanujan’s and Kloosterman’s sums proved in 5 5.6), and Will  be found in
text-books. The theory of congruences was first developed scientifically by Gauss,
D.A., though tho main results must have been familiar  to earlier mathematicians
such as Fermat  and Euler.  We give occasional references,  especially when some
famous function or theorem is habitually associated with the name of a particular
mathematician, but make no attempt to be systematic.

5 5.5. Euler, Nowi Comm. ACUG?.  P&op.  8 (1760-l), 74-104 [Operu  (l),  ii.
531-441.

It might seem more natural  to say  that f(m) is multiplicative if
f(mm’)  = f(mMW

for a11 712,  m’. This definition would be too restrictive, and the less exacting
definition of the text is much more useful.

5 5.6. The sums of this section occur in Gauss, ‘Summatio quarumdam
serierum singularium’ (1808), Werke, ii. 1 l-45; Ramanujan, Trans. Camb. Phil.
~Soc.  22 (1918), 259-76 (Collected  Papers, 179-99); Kloosterman, Acta  Math. 49
(1926), 407-64. ‘Ramanujan’s sum’ may  be found in earlier writings; see, for
example, Jensen, Beretning d. tredje  Skand. Matematikercongres (1913), 145, and
Landau, Handbuch, 572: but Ramanujan was the first mathematician to see its
full importance and use it systematically. It is particularly important in the
theory of the representation of numbers by sums of squares.

8 5.8. The general theory was developed by Gauss, D.A., @ 335-66. The first
explicit  geometrical construction of the 17-agon was made by Erchinger (see
Gauss, Werke, ii. 186-7). That in the text is due to Richmond, Quarterly  Journal
of Math. 26 (1893), 206-7, and Math. AnnaZen, 67 (1909),  459-61. Our figure is
copied from Richmond’s.

Gauss (D.A., 3 341) proved that the equation (5.8.1) is irreducible, i.e.  that
its left-hand side cannot be resolved into factors of lower degree with rational
coefficients, when n is prime. Kronecker and Eisenstein proved, more generally,
that the equation satisfied by the d(n)  primitive nth  roots of unity  is irreducible;
see, for example, Mathews, 186-S. Grandjot has shown that the theorem cari be
deduced verysimply fromDirichlet’sTheorem  15: see Landau, l’orlesungen,  iii. 2 19.
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FERMAT’S THEOREM AND ITS CONSEQUENCES

6.1. Fermat’s theorem. In this chapter we  apply the general ideas
of Ch. V to the proof  of a series  of classical theorems, due mainly to
Fermat,  Euler, Legendre, and Gauss.

THEOREM 70. If p is prime, then

(6.1.1) UP  = a (modp).

THEOREM 71 (FERMAT'S THEOREM).  If p isprime,andp  /a, then

(6.1.2) UP--~ z; 1 (modp).

The congruences (6.1.1) and (6.1.2) are equivalent when p ,j’  a; and
(6.1.1) is trivial when p [ a, since  then UP  = 0 = a. Hence Theorems
70 and 71 are equivalent.

Theorem 71 is a particular case of the more general

THEOREM 72 (THE FERMAT-EULER THEOREM). Ij’(a,m)  - 1, fhen

&Cm)  = 1 (Imodm).

If x runs through a complete system of residues prime to m, then, by
Theorem 58, ux also  runs through such  a system. Hence, taking the
product of each  set, we have

n (a~)  = 11 x (modm)

or u$(m)  n z = J-1 z (modm).

Since  every number x is prime to m, their product is prime to m; and
hence,  by Theorem 55,

drn) s 1 (mod m).

The result is plainly false if (a, m) > 1.

6.2. Some properties of binomial coefficients. Euler was the
first to publish a proof  of Fermat’s theorem. The proof,  which is easily
extended SO as to prove Theorem 72, depends on the simplest arith-
metical properties of the binomial coefficients.

THEOREM 73. If m und  n are positive integers, then the binomial
coeficients

m

0

m(m-l)...(m-n+l) --m
n- n! ' 0

m(m+l)...(m+n-1)
n

= (-l)n
n! -

are integers.
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It is the first  part of the theorem which we need here, but, since

(;m)  = (-l)“(m+;-l),
the two parts are equivalent. Either part may  be stated in a more
striking form, viz.

THEOREM 74. The product  of any  n successive positive integers is
divisible by n!.

The theorems are obvious from the genesis of the binomial coefficients
as the coefficients of powers of x in (1+x)(1+x)...  or in

(1-2)-l(l-s)-r... = (1 +x+xz+...)(  1 +x+s2+  . ..)... .

We may  prove them by induction as follows. We choose Theorem 74,
which asserts that

(m), = m(m+l)...(m+n-1)

is divisible by n! . This is plainly true for n = 1 and a11  m, and also for
m = 1 and a11 n. We assume that it is true (a) for n = N-l and a11
m and (b) for n = N and m = M. T h e n

(M+ 1),-M,  = NWS  lh-1,
and (M-kl)N-l  is divisible by (N-l)!. Hence (M+l), is divisible by
N!, and the theorem is true for n = N and m = M+ 1. It follows that
the theorem is true for n = N and a11 m. Since  it is also true for
n = N+l and m = 1, we  cari  repeat the argument; and the theorem
is true generally.

THEOREM 75. If p is prime, then

($3  (g *a*>  (p-l)
are divisible by p.

Ifl<n<p-1,then

n!  Ip(p-l)...(p-nfl),
by Theorem 74. But n! is prime to p, and therefore

n! j (p-l)(p-2)...(p-n+l).

Hence P0 = ,(p-l)(p-2)...(p-n+l)
n n!

is divisible by p.

THEOREM 76. If p is prime, then a11 the coeficients  in (l-x)-p are
divisible by p, except  those of 1, x1-‘,  x21>,  . . . , which are congruent to 1 (mod 13).
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By Theorem 73, the coefficients in

(l-x)-P = 1+  2 r+;-l)P
h=l

are a11 integers. Since

(1-zq-1 = l-+Xp+X2p+...,

we have to prove that every coefficient in the expansion of

(l-+9-1-(1-2)-”  = (1-2j-q1-Zp)-~{(l.-x)~-1+Lq

is divisible by p. Since the coefficients in the expansions of (l-x)-P
and (1 -xP)-l  are integers it is enough to prove that every coefficient
in the polynomial (l-x)p-l+xP  is divisible by p. For p = 2 this is
trivial and, for p > 3, it follows from Theorem 75 since

(l-x)p-l+zp  = 2 (-l)‘(p.

We shah  require this theorem in Ch. XIX.

THEOREM 77. If p is prime, then

(xfy+...+~)p  G xp-typ+...+wp  (modp).

For (~+y)”  z xp-typ  (modp),

by Theorem 75, and the general result follows by repetition of the
argument.

Another useful corollary of Theorem 75 is

THEOREM 78. lfcx > 0 and

m EE 1 (rnodp*),

then mp  G 1 (rnodp”+l).

For m = l-j-kpa,  where k is an integer, and ap > a+ 1. Hence

mp  = (l+kp’y)P  = l+ZpOL+l,

where 1 is an integer.

6.3. A second proof of Theorem 72. We cari  now give Euler’s
proof  of Theorem 72. Suppose that m = n pa. Then it is enough,
after Theorem 53, to prove that

a+(m)  E 1 (modpq).
6691 IV
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But d(m)  = rI  &P9  = II Pa-‘(P-l),
ana SO it is suficient  to prove that

aP~-l@-l)  G 1 (mOapa)

when p ,j’  a.
By Theorem 77,

(x+y+...)p  G ~p+p+...  (modp).

Taking x = y = z = . . . = 1, ad supposing that there are a numbers,
we obtain ap f a (modp),

01 ap-l  E 1 (modp).

Hence, by Theorem 78,

ap(p-l) F 1 (modpz), aP'(P-l)  E 1 (m0dp3), . . .  .

aPa-‘@-l)  f 1 (modpa).

6.4. Proof of Theorem 22. Before proceeding to the more impor-
tant applications of Fermat’s theorem, we use it to prove Theorem 22
of Ch. II.

We cari  Write  f(n) in the form

where the a ad c are integers and

1 < a1  < a2  < . . . < a,.

The terms off(n) are thus arrangea in increasing order of magnitude
for large n, and  f(n) is dominated by its last term

c m,qm  @ma%
for large n (SO that the last c is positive).

If f (n) is prime for a11 large n, then there is an n for which

ad p is prime. Then
f(n)  = P > a,

{n+kp(p-1))8  f nS(mOdp),

for a11  integral E and s. Also, by Fermat’s theorem,

af-l-  1 (modp)

ad SO a:+kp(p-u s a:(moclp)

for a11  positive integral k.  Hence
{n+lcp(p- 1))8a++“(P-l) E nsap  (modp)
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ad therefore f{n+kp(p-1))  = f(n)  = 0 (modp)

for a11 positive integral k; a contradiction.

67

6.5. Quadratic residues. Let us suppose that p is an odd prime,
that p 1 a, and that x is one  of the :numbers

1, 2, 3 >...,  p-l.

Then, by Theorem 58, just one  of the numbers

l.z,  2.x,.:., (p-1)2

is congruent to a (modp). There is therefore a unique x’  such  that

xx’ EZ  a (modp), 0 <XI <p.

We call  x’ the associate of x. There are then two possibilities: either
there is at least one  x associated with itself, SO that x1  = x, or there is
no such  x.

(1) Suppose that the first alternative is the true one  and that x1  is
associated with itself. In this case the congruence

x2  = a (modp)

has the solution x = xi; and we sa,y  that a is a quadratic residue of p,
or (when there is no danger of a misunderstanding) simply a residue
of p, and Write  a R p. Plainly

z = p-x, z -xi (modp)

is another solution of the congruence. Also, if x’  = x for any  other
value x2  of x, we have

x2  E a15 x2  s a2 9 (x,-x,)(x,+x,)  = xt--XE  E 0 (modp).

Hence either x2  E x1  or
x2  E -x1 E p-x,;

and there are.just  two solutions of the congruence, namely xi and p-x,.
In this case the numbers

1, 2,...,  p-l

may  be grouped as xi,  p-xi, and &(p-3)  pairs of unequal associated
numbers. Now

xI(p-x,)  G --x1 E -a (modp),

while xx’  E a (modp)

for any  associated pair x, x’.  Hence

(p-l)! = n x 5 -a.&-3)  zz -a~@-i)  (modp).
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(2) If the second alternative is true and no x is associated with itself,
we say  that a is EL quadratic non-residue of p, or simply a non-residue
of p, and Write  a N p. In this case the congruence

x2 E a (modp)

has no solution, and the numbers

1, z,...,  p-l

may be arranged in &(p- 1) associated unequal pairs. Hence

(p-l)!  = JJ x G &P-1) ( modp).

We define ‘Legendre’s symbol’ %  , where p is an odd prime and a is
0

any number not divisible by p, by

It is plain that

= +1, i f  aRp,

=  - 1 ,  i f  aNp.

if a 3 b (mod p). We have then proved

THEOREM 79. If p is an odd prime and a is not a multiple of p, then

We have supposed p odd. It is plain that 0 = 02,  1 = 12,  and SO a11  numbers,
are quadratic residues of 2. We do not deflne  Legendre’s symbol when p = 2,
and we ignore this case in what follows. Some of our  theorems are true (but
trivial) when p = 2.

6.6. Special cases of Theorem 79: Wilson’s theorem. The
two simplest cases are those in which a = 1 and a = - 1.

(1) First let a = 1. Then
x2 E 1 (modp)

has the solutions x = f 1; hence 1 is a quadratic residue of p and

1

01,=
1 .

If we put a = 1 in Theorem 79, it-becomes

THEOREM 80 (W ILSON’S THEOREM) :

(p-l)! = -1  (modp).
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Thus 11 13628801.
The congruence (p-l)!+1  E O(modp2)

is true for P = 5, p == 13, p = 563,
but for no other value of p less than 200000. Apparently no general theorem
concerning the congruence is known.

If m is composite, then
m 1 (m-l)!+1

is false, for there is a number d such that

dlm, l < d < m ,
and d does not divide (m - 1) ! + 1. Hence  we derive
THEOREM 81. If m > 1, then a necessary and suficient  condition that

m should be prime is that
m 1 (m--l)!+l.

The theorem is of course quite  useless as a practical test for the
primality of a given number m.

(2) Next suppose a = - 1. Then Theorems 79 and 80 show that

- 1t-1P
= -(-1)1<P-‘>(p-l)!  E (-l)l(P-1).

THEOREM 82. The number - 1 is a quadratic residue of primes of the
form 4k+l and a non-residue of primes of the form 4k+3,  Le.

- 10P
= (- l)l(P-1).

More generally, combination of Theorems 79 and 80 gives

THEOREM 83 : a
0iJ

E a*(~‘-1)  (modp).

6.7. Elementary properties of quadratic residues and non-
residues. The numbers
(6.7.1) 12,  22,  32 >...,  (&(p-1))s
are a11  incongruent; for r2 G s2 implies r E s or r F -s (modp), and
the second alternative is impossible here. Also

r2 E (p-r)2  (modp).
It follows that there are $(p- 1) residues and &(p-  1) non-residues of p.
THEOREM 84. There are i(p-1)  residues and J(p-1)  non-residues of

an odd prime p.
We next prove
THEOREM 85. The product of two  residues, or of two  non-residues, is

a residue, while the product of a residue and a non-residue is a non-residue.
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(1) Let us Write  01,  01’,  01~  ,...  for residues and p, /3’,  j3i  ,...  for non-
residues. Then every (Y& is an 01,  since

x2  E <Y  . y2  E 01’  + (~y)2  s OI~L’  (modp).

(2) If q is a fixed residue, then

l.cQ>  2.c$  3.01, >...>  (p-l)Lu,

is a complete system (modp). Since  every 0101~  is a residue, every /3q
must be a non-residue.

(3) Similarly, if p, is a fixed non-residue, every @,  is a residue. For

1 .A, 2 ./31,...,  (P-  l>B,
is a complete system (modpj, and every $, is a non-residue, SO that
every /3/3i  is a residue.

Theorem 85 is also a corollary of Theorem 83.
We add two theorems which we shall use in Ch. XX. The first is

little but a restatement of part of Theorem 82.

THEOREM 86. If p is a prime 4h+  1, then there is an x such  tha,t
1+x2 = mp,

where 0 < m < p.

For, by Theorem 82, - 1 is a residue of p, and SO congruent to one
of the numbers (6.7.1), say  x2; and

0 < 1+x2 < lf(jp)2 < p2.

THEOREM 87. If p is an odd prime, then there are numbers x and y SUC~
that 1+x2+y2  = mp,
where 0 < m < p.

The i(p+l)  numbers

(6.7.2) x2 (0 <x < &(P-  1))
are incongruent, and SO are the &(p+l) numbers

(6.7.3) -b-y2 (0 <y  < i(p-1)).

But there are p + 1 numbers in the two sets together, and only p residues
(modp); and therefore some number (6.7.2) must be congruent to some
number (6.7.3). Hence  there are an z and a y, each  numerically less
than ip, such  that

x2  EE  -l-y2, 1+x2+y2  = mp.

Also 0 < 1+s2+y2  < lf2(&p)2  < p2,

SO that 0 < m < p.
Theorem 86 shows that we may  take y = 0 when p = 4kf 1.
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6.8. The order of a (mod m). We know, by Theorem 72, that

a$@)  E 1 (modm)

if (a, m) = 1. We denote by d the smallest positive value of x for which

(6.8.1) a5 z 1 (modm),
SO that d < 4(m).

We cal1 the congruence (6.8.1) the proposition P(x). Then it is
obvious that P(x) and P(y) imply P(x+y). Also, if y < x-and

az-v SE EN  (mod m),

then a” E bat’  (modm),

SO that P(x) and P(y) imply P(x--y). Hence  P(x) satisfies the condi-
tions of Theorem 69, and

d/4+4.
We cal1 d the ordert  of a (modm), and say  that a belongs to d (mod m).

Thus 2 f 2, 22 E 4, 23 sz 1 (mod 7),

and SO 2 belongs to 3 (mod7). If d = 4(m),  we say  that a is a primi-
tive root of m. Thus 2 is a primitive root of 5, since

2 EE  2, 22 E 4, 23 fZ 3, 24 EE  1 (mod 5);

and 3 is a primitive. root of 17. The notion of a primitive root of m
bears some analogy to the algebraical notion, explained in 3 5.6, of a
primitive root of unity.  We shah  prove in $7.5 that there are primitive
roots of every odd prime p.

We cari  sum up what we have proved in the form

THEOREM 88. Any number a prime to m belongs (modm) to a divisor
of 4(m): if d is the order  of a (modm),  then d l+(m). If m is a prime p,
then d 1 (p- 1). The congrtience  ax  :E  1 (modm) is true or false according
as x is or is not a multiple of d.

6.9. The converse of Fermat’s theorem. The direct converse of
Fermat’s theorem is false; it is not true that, if m 1 a and

(6.9.1) am-l  E 1 (modm),

then m is necessarily a prime. It is not even true that, if (6.9.1) is true
for a11 a prime to m, then m is prime.. Suppose, for example, that
m=561=3.11.17.  If,3~,a,ll,/‘a,17j’a,wehave

a2  E 1 (mod3), al” z 1 (modll), a16  E 1 (mod17),

t Often called the index; but this word has a quite different meening  in the theory
of groupa.
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by Theorem 71. But 2 [ 560, 10 1560, 16 1560 and SO a56o  E 1 to each
of the moduli 3, 11, 17 and SO to the modulus 3.11.17 = 561.

For particular a we cari  prove a little more, viz.

THEOREM 89. For every a > 1, there is an in$nity  of composite m
satisfying (6.9.1).

Let p be any  odd prime which does not divide a(~+-1).  We take

(6.9.2)

SO that m is clearly composite. Now

(a”--l)(m-1)  = a2p-a2  = a(a~-l-l)(aP+a).

Since a and ap are both odd or both even, 2 1 (~P+U).  Again UP-~-~
is divisible by p (after Theorem 7 1) and by a2-  1, since  p- 1 is even.
Since p ,/’  (a”- l), this means  that p(a2- 1) 1 (UP-l-1). Hence

2p(a2- 1) 1 (a2- I)(m-  l),

SO that 2p j (m--l) and m = 1+2pu  for some integral U. Now, to
modulus m,

a2p  = l+m(a2-1)  = 1, (p-1  = a2PU  E 1

and this is (6.9.1). Since we have a different value of m for every odd
p which does not divide u(a2-l),  the theorem is proved.

.A correct converse of Theorem 71 is

THEOREM 90. 1f am-1  E 1 (modm) and a” + 1 (modm) for  any
diviàor x of m- 1 less  than m- 1, then m is prime.

Clearly  (a,m) = 1. If d is the order of a (mqdm), then d 1 (m-l) and
d I+(m) by Thea’rem  88. Since ad E 1, we must have d = m- 1 and
SO (m-l) / 4(m).  But

$(m)  =  mn  (1 - i )  < m - l
Plm

if m is composite, and therefore m must be prime.

6.10. Divisibility of 2p-l-1  by p2. By Fermat’s theorem

2p-1-l  E 0 (modp)

if p > 2. 1s  it ever true that

2p-l- 1 G 0 (modp2) ?
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This  question is of importance in the theory of ‘Fermat’s last theorem’
(see Ch. XIII). The phenomenon does occur, but very rarely.

THEOREM  91. There is a prime p for which
2p-l-1  E 0 (modp2).

In fact this is true when p = 1093,  as cari  be shown by straight-
forward calculation. We give a shorter proof,  in which a11 congruences
are to modulus p2 = 1194649.

In the first place, since

3’ = 2187 = 2p+1,
we have

(6.10.1)

Next

314  E 4p+1.

214  = 16384 = 15p-11, 22s  s -33Op+121,

32.228 s -297Op+1089  = -2969p-4 E -1876p-4,

and SO 32.226 E --469p-1.

Hence, by the binomial  theorem,

314.21s2  E -(469p$-1)’  G -3283p-1,
and SO

(6.10.2) 314.2182  z -4p-1.

From (6.10.1) and (6.10.2) it follows that
314 2182  ZZZ  -314 > 2182  ZZZ  -1

arid SO 21°s2  F 1 (mod 10932).

6.11. Gauss’s lemma and the quadratic character of 2. If p
is an odd prime, there is just one  residuet of n (modp) between -$p
and +p.  We cal1 this residue the minimal residue of n(modp);  it is
positive or negative according as the least non-negative residue of n lies
between 0 and +p  or between $p and p.

We now suppose that m is an integer, positive or negative, not
divisible by p, and consider the mini:mal  residues of the &(p- 1) numbers

(6.11.1) m, 2m,  3m ,...,  g(p-1)m.

We cari  Write  these residues in the form

rl,  r, ,...,  q, -ri, -rb ,..., -r;y
where XSP = HP-113 0 < :ri  < &p, 0 < ri  < Qp.

t Hem, of course, ‘residue’ has its usual meaning and is not an abbreviation  of
‘quadratic residue’.



74 FERMAT'S THEOREM  AND ITS CONSEQU ENCES [chap.vI

Since  the numbers (6.11.1) are incongruent, no two r cari  be equal, and
no two Y’. If an r and an r’  are equal, say  ri = rj,  let am, bm be the
two of the numbers (6.11.1) such  that

am G ri, bm ES  -ri Wdp).
!J!hen am+bm  E 0 (modp),

and SO a+b E 0 (modp),

which is impossible because 0 < a < +p,  0 < b < +p.
It follows that the numbers ri, ri  are a rearrangement of the numbers

1,  2 >...>  B(P-1);
and therefore that

m.:!m...i(p-l)m  z (-l)Pl.2...+(p-1)  (modp)

and SO mi@-1)  E (-l)p (modp).

But E rnt@-l)  (modp),

by Theorem 83. Hence  we obtain

THEOEEM 92 (G-AUSS’S  LEMMA) :
0
F = (- l)P,  where t.~  is the number

of members of tlae set
m, 2m,  3m ,...,  +(p-l)m,

whose least posi,tive  residues (modp) are greater than Qp.

Let us take in  particular m = 2, SO that the numbers (6.11.1) are

2, 4 >...>  p-l.

In this  case h is the number of positive even integers less than $p.
We  introduce here a notation which we shall use frequently later.

We Write  [z] for the ‘integral part of CE’, the largest integer which does
not exceed x. Thus

x = [xl+f,
where 0 < f < 1. For example,

[i’] = 2, [2] = 0, [-il  = -2.

With this notation h = EPI.
B u t h+P  = HP-l),
and SO P = i(P-l)-[$PI.

If p SE  1 (mod4),  then
/J  == &(p-l)-$(p-1)  = $(p-1)  = [&(P+i)],

and if p E 3lmod. 4), then
p = 3(p-l)-$(p-3) = $(pfl)  = [$(p+l)].
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Hence
0

2 = Z&(P-1)  z (-l)[t(~+Ul  (modp),

i

that is to say
0

2
= 1, if p = 8n+l  or 8n-1,

i

0
2 =  - 1 ,  i f  p == 8n+3  or  8n-3.
1,

If p = 8n&l,  then Q(p2-1)  is even, while if p = 8nf3,  it is odd.
Hence (- l)[f(P+l)I  = (- lp(zJ-1).

Summing up, we have the following theorems.

THEOREM 93:
0

2 = (- ~)tfcP+lll*
F

THEOREM 94:
0

2 = (- L)i(P"-1).

1,

THEOREM 95. 2 is a quadratic residue of primes of the form 8n&  1 and
a quadratic non-residue of primes of the form 8n&3.

Gauss’s lemma may  be used to determine the primes of which any
given integer m is a quadratic residue. For example, let us take m = - 3,
and suppose that p > 3. The numbers (6.11.1) are

-3a (1 < a < +p),

and p is the number of these numbers whose least positive residues lie
between ip and p. Now

-3a G p-3a (modp),

and p-3a lies between Jp  and p if 1 < a < &p.  If +p  < a < $p, then
p-3a lies between 0 and +p. If +p  < a < -&p, then

-3a 3 2p-3a  (modp),

and 2p- 3a lies between $p and p. Hence the values of a which satisfy
the condition are

1,  L.,  [+PI,  [Qpl+l, [Qp]+2,...,  [*PI,
and tL = [~Pl+[:PI-[SPl~
If p = 6n+l then p = n+3n-2n  is even, and if p = 6n+5  then

CL = n+Pn++(2nfl)
is odd.

THEOREM 96. - 3 is a quadratic residue of primes of the form 6n+  1
and a quadratic non-residue of primes of the form 6n+5.
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A further ex,ample,  which we leave for the momentt to the reader,  is
THEOREM 97. 5 is a quadratic residue of primes of the form lOn&l  and

a,  quadratic non-residue of primes of the form lOn& 3.

6.12. The 1:aw  of reciprocity. The most famous  theorem in this
field is Gauss’s ‘law of reciprocity’.
THEOREM 98. If p and q are odd primes, then

i i( 1z qqr, = (- l)P’c?‘,
where P’ = g(P-l), q’ = gq-1).

BB cc

LL

00
FIG. 7.

Since  p’q’ is even if either p or q is of the form 4n+ 1,  and  odd if both
are of the form 4n+3,  we cari  also  state the theorem as

THEOREM 99 . If p and q are odd primes, then

P q0 0- - -
q - P’

unless  both p and q are of the for&  4n+3,  in which case

(z)=-(;).

We require a lemma.

THEOREM 1OO.t I f fl(q,p)  = 2  ri],
s=1

then S(!I>  P)+&P,  q)  = p’q’.
The proof  ma,y be stated in a geometrical form. In the figure (Fig. 7)

A.C  and BC are 51: = p, y = q, and KM ad LM are x = p’, y = q’.
t Sec  5 6.13 for a proof  depending on Gauss’s  law of reciprocity.
$ The notation has no connexion with that of 5 5.6.
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If (as in the figure) p > q, then q’!p’  < q/p, and Arc  falls below the
diagonal OC. Xince ,

PI  <y <: q’+L

there is no integer between KM = q’ and KN = qp’/p.
We Count  up, in two clifferent wa;ys,  the number of lattice points in

the rectangle OIIML,  counting the points on KM and LM but not
those on the axes. In the first place, this number is plainly p’q’. But
there are no lattice points on OC (since p and q are prime), ad none
in the triangle PMN except perhaps on PM. Hence the number of
lattice points in OKML is the sum of those in the triangles OKN and
OLP (counting those on KN ad LP but not those on the axes).

The number on ST, the line x = s,  is [sq/p],  since sq/p  is the ordinate
of T. Hence the number in OKN is

=: S(q,p).

Similarly,  the number in OLP is fi@,  q), ana  the  conclusion  fdow~.

6.13. Proof of the law of reciprocity. We cari  write

(6.13.1) kq =p  ; j-t+.>[ 1
where 1 < k <PI, l < Uk < p-l.

Here uk  is the least positive resiclu.e  of kq (modp).  If uk  = vk  < p’,
then uk  is one  of the minimal residues ri of 3 6.11, while if uk  = wk  > p’,
then u,-p is one  of the minimal residues -ri. Thus

ri = vk, :r; = p-w,

for every i, j,  ad some k.
The ri ad rj  are (as we saw in $ 6.11) the numbers 1, 2,...,  p’ in some

order. Hence, if

R = 2 ri  = z) vk, R’=zr;=z(p-w,)=,~~p-Iw~

(where p is, as in 9 6.11, the number of the ri),  we have

ad SO

(6.13.2) @+  2 Ok--  2 ‘& = &(p2-1).
On the other hard, summing (6.13.1) from k = 1 to k = p’, we bave

(6.133 -BdP”-1) = Ps(%P)+  2 % = p’%LP)+  2 v,+ ;r wk.
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From (6.13.2) and (6.13.3) we deduce

(6.13.4) i(+l)(<r-l)  = Ps(q,P)+2  zwk-@*

Now q- 1 is even, and p2- 1 E 0 (mod 8);t  SO that the left-hand side
of (6.13.4) is even, and also the second term on the right. Hence (since
p is odd) S(a  P)  = P (mod 3
and therefore, by Theorem 92,

Finally,

0
1 = (-1)P  = (-l)S(n,P)*
P

d)o
2 ; = (-l)wc7.P)+s@,P)  = (.-. l)xw,

by Theorem 100.
We now use the law of reciprocity to prove Theorem 97. I f

p = lOn+k,

where k is 1, 3, 7, or 9, then (since 5 is of the form 4nfl)

The residues of 5 are 1 and 4. Hence 5 is a residue of primes 5n+  1
and 5n+4,  i.e. of primes 10nfl  and lOnf9, and a non-residue of the
other odd primes.

6.14. Tests for primality. We now prove two theorems which
provide tests for the primality of numbers of certain special  forms.
Both are closely related to Fermat’s Theorem.

THEOREM 101. If p > 2, h (p, n = hp+l or hp2+l  and

(6.14.1) 9+ 1, 2”-l  s 1 (modn),

then n is prime.
We write n = hpb+1,  where b = 1 or 2, and suppose d to be the

order of 2 (modn). After Theorem 88, it follows from (6.14.1) that d ,/  h
and d 1 (n-l), i.e. d ( hpb. Hence p 1 d. But, by Theorem 88 again,
d 1 +(n)  and SO p 1 d(n). I f

n = pp...p2,

we have 4(n) = p~-l...p~-l(pl-  l)...(p,-1)

and SO,  since p]n,  p divides at least one  of p,-1,  p,--l,...,  pk-1.
Hence n has a prime factor  P G 1 (modp),

t Ifp = 2n+l then p*-1  = 4n(n+l)  e 0 (mod 8).



6.14  (IOZ)]  FERMAT’S THEOREM A.ND ITS CONSEQUENCIW 19

Let  n = Pm. Since n E 1 s P (modp), we have m s 1 (modp).
Ifm > 1, then

(6.14.2) n = (u~+l)(w+l), l<U<V

and hpb-1  = uvp+u+v.

If b ==  1, this is h = uvp+u+v and SO

P < UVP <: h <p,

a contradiction. If b = 2,

hp = uvpfufv, P I (u+v), Ui+bP
and so 2v a u+v > p, V>&P
and

UV < h < p, UV <p-2, U <p-2,-y=- *2(P-2)  < 2
P

Hence u = 1 and SO

V>P-1, UV > p-l,
a contradiction. Hence (6.14.2) isimpossible  and m = 1 and n = P.

THEOREM 102. Let m > 2, h < ~2~  and n = h2m+l be a quadratic
non-residue (modp) for some odd prime p. Then the necessary and su&
tient  condition for n to be a prime is that

(6.14.3) p*(n-l)  E - 1 (mod n).

First let us suppose n prime. Sinoe n E 1 (mod 4),  we have

0 0
2 = L-1
n P,

by Theorem 99. Then (6.14.3) follows at once by Theorem 83. Hence
the condition is necessary.

Now let us suppose (6.14.3) true. Let P be any prime factor  of n and
let d be the order of p (mod P). WC:  have

ptin-1)  E Il) pn-1  E ]-> pp-l s 1 (mod P)

and SO, by Theorem 88,

dX%(n-11, d 1 (n-l), d 1 (P-11,
that is d ,f’ 2”-lh, d 1 2”“h, d 1 (P-l),
SO that 2*ajd  and 2ml  (P-l). Hence P = 2%+1.

Since n zz 1 E P (mod2m),  we habve  n/P  E 1 (mod2m)  and SO

n = (2mz+1)(2my+l), x 3 1, y > 0.

Hence Smxy  < 2mxy+x+y  ==  h < 2m, y=0

and n = P. The condition is therefore sufficient.
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Ifweputh:=1,m=2k, we have n = Fk  in the notation of 5 2.4.
Since  l2  = 22 G 1 (mod 3) and Fk  - 2 (mod3),  li;c  is a non-residue
(mod 3). Hence a necessary and sufficient condition that Fk  be prime
is that Fk  1 (34(Fk-1)+  1).

6.15. Factors of Mersenne numbers; a theorem of Euler. We
return for the moment to the problem of Mersenne’s numbers, men-
tioned in 5 2.5. There is one  simple criterion, due to Euler, for the
factorability of ïl$ = 21,  - 1.

THEOREM 103. If k > 1 and p = 4k+3  is prime, then a necessary
and su.cient  condition that 2p+ 1 should  be prime is that

(615.1) 2p  = 1 (mod2pfl).

Thus, if 2p+l  is prime, (2p+l) 1 M, and Mp is composite.

First let us suppose that 2p+ 1 = P is prime. By Theorem 95, since
P = 7 (mod S),  2 is a quadratic residue (mod P) and

2p  = 2*(P-l)  e 1 (mod P)

by Theorem 83. The condition (6.15.1) is therefore necessary and
I’j M,. But k > 1 and SO p > 3 and M, = 2p- 1 > 2p+l  = P.
Hence M, is composite.

Next, suppose that (6.15.1) is true. In Theorem 101, put h = 2,
n,  = 2p+l.  Clearly  h <p  and 2h  = 4 $ 1 (modn) and, by (6.15.1),

2n-1  = 22p  E 1 (modn).

Hence n is prime and the condition (6.15.1) is sufficient.

Theorem 103 contains  the simplest criterion known for the charac-
ter of Mersenne numbers. The first eight cases in which this test gives
a factor of Manf3  are

23 1 J&,, 47 l Mzs, 167 ) Mm 263 1 Km

3% 1 @ml, 383 I Km 479 I M2391 503 I M251.
*  .

NOTES ON CHAPTER VI
3 6.1. Fermat stated his theorem in 1640 (G’uwes, ii. 209). Euler’s first proof

dates from 1736, and his generalization from 1760. See Dickson,  Wistory,  i, ch. iii,
for full information.

$ 6.5. Legendre  introduced ‘Legendre’s symbol’ in his Essai sur la théorie des
nombres, first published  in 1798. Sec,  for example, f 135 of the second  edition
(1808).
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5 6.6. Wilson’s theorem was first publiahed by Waring, Meditationes algebraicae
(1770), 288. There is evidence that it was known long before to Leibniz. Goldberg
(Journ. London Math. Soc. 28 (1953), 252-6) gives the residue of (p-l)!+ 1 to
modulus J? for p < 10000. See E. H. Pearson [Math. C’omputation 17  ( IYOYJ,
194-51  for the statement about the congruence (modp2).

5 6.9. Theorem 89 is due to Cipolla.,  Annali  di Mat. (3),  9 (1903), 13926t
Amongst others the following composite values of m satisfy (6.9.1) for a11 a
primetom,viz.3.11.17,5.13.17,5.17.29,5.29.73,7.13.19.Apartfromthese,
the composite values of m < 2000 for which 2”-i  = 1 (modm) are

341 = 11.31, 645 = 3.5.43, 1387 = 19.73, 1905 =3.5.127.
See also Dickson, History,  i. 91-95, and :Lehmer,  Amer. Math. Monthly, 43 (1936),
347-54. Lehmer gives a list of large composite m for which 2m-1 = 1 (modm).

Theorem 90 is due to Lucas, Amer. Journal of Math. 1 (1878), 302. It has
been modified in various ways by D. H. Lehmer and others in order to obtain
practicable  tests for the prime or composite character of a given large m. See
Lehmer, lot.  cit., and Bulletin Amer. Math. Soc. 33 (1927), 327-40, and 34 (1928),
5P56,  and Duparc,  Simon Stewin  29 (1952),.21-24.

5 6.10. The proof  is that of Landau, Vorlesungen,  iii. 275, improved by R. F.
Whitehead. Theorem 91 is true also forp = 3511 (N. G. W. H. Beeger, Mess. Math.
51 (1922), 149-50) and for no other p < 200000 (see Pearson, lcc.  cd., above).

§$  6.11-13. Theorem 95 was first proved by Euler.  Theorem 98 was stat,ed  by
Euler and Legendre, but the first satisfactory  proofs were by Gauss. See Bachmarm,
Niedere Zahlentheorie,  i, ch. 6, for the history  of the subject, and many other proofs.

$6.14. Taking the known prime 2127-  1 asp in Theorem 101, Miller and Wheeler
tested n = hp+  1 and n = hp2+  1 (with various small values of h) for prime
factors < 400 and < 2000 respectively.. For exemple, trivially, if h is odd, 21n.
They then  showed that 2h  f 1 (modn)  for the remaining h (a fairly simple matter,
since  2h-  1 is not large compared  with n). Finally they used the Cambridge
electronic computer to test whether 2”-’  = 1 (mod n). For each n = h++ 1, this
took about 3 minutes, and for each 12  = hp2+  1 about 27 minutes. Several primes
of form hp + 1 were found. Seven numbers of the form hp2+  1 were found not
to satisfy Zn-’ E 1 (modn) (and SO to be composite) before 12  = 180p2+1  was
found to satisfy the test. See Miller, E ureka, October 1951; Miller and Wheeler,
Nature, 168 (1951), 838; and our note to $ 2.5. Theorem 101 is also true when
n = hp3+  1, provided that h < $n and that h is not a cube. See Wright, Math.
Gazette, 37 (1953), 1066.

Robinsonextended Theorem 102 (Am,sr. Math. Monthly, 64 (1957), 793-10)  and
he and Selfridge used the case p = 3 of the theorem to find a large number of
primes of the form h. 2m+ 1 (Math. tabZ,as  and other aids to computation,  11(1957),
21-22). Amongst these primes are several factors of Ferma@ui%bers.  See also
the note to § 15.5.

Lucas [Théorie des nombres, i (1891)  p. xii] stated the test for the priniality
of Fk.  Hurwitz [Math. Werke. ii. 7471 gave a proof.  FIO  was proved composite by
this test, though an actual factor  was subsequently found (see Selfridge, Math.
tables and other aids to computation,  7 (1!353),  274-5).

J 6.15. Theorem 103; Euler,  Comm. Acad. Petrop.  6 (1732-3),  103 [Opera (l),
ii. 31.
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VII

GENERAL PROPERTIES OF CONGRUENCES

7.1. Roots of congruences. An integer x which satisfies the con-
gruence f(x) = C~X~+C1x”-l +...+c,  = 0 (modm)
is said to be a root  of the congruence or a root off(x) (modm). If a is
such  a root, then SO is any  number congruent to a (modm). Congruent
roots are considlered equivalent; when we say  that the congruence has
1 roots, we mean  that it has 1 incongruent roots.

An algebraic lequation  of degree n has (with appropriate conventions)
just n roots, and a polynomial of degree n is the product of n linear
factors. It is natural to inquire whether there are analogous theorems
for congruences, and the consideration of a few examples shows at once
that they cannot be SO simple. Thus
(7.1.1) xp-l-1 = 0 (modp)

has p-l roots, viz. 1, 2 >...>  p-1,
by Theorem 71;
(7.1.2) x4-  1 = 0 (mod 16)

has 8 roots, viz. 1, 3, 5, 7, 9, 11, 13, 15; and

(7.1.3) x4-2  = 0 (mod16)

has no root. The possibilities are plainly  much  more complex than they
are for an algebraic equation.

7.2. Integrall  polynomials and identical congruences. If cg,
ci,..., c,  are integers then

Cox~+C1x~-l+...+C,

is called an inteqral  polynomial. If

f(x)  = zocr x”-‘3 g(x) = 5 c;xn-r,
r=o

and c,  = ci  (modm) for every r,  then we say  that f(x) and g(x) are
congruent to modulus  m, and Write

f(x) = g(x) (modm).
Plainly f(x)  = g(x)  + fww = &P&
if h(x) is any  integral  polynomial.

In what follows we shall use the symbol ‘= ’ in two different senses,
the sense of $ 5.2, in which it expresses a relation between numbers,
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and the sense just detîned,  in which it expresses a relation between
polynomials. There shoulcl be no confusion because, except in the
phrase ‘the congruence f(x) G 0’, the variable x Will  occur only when
the symbol is used  in the second sense. When we assert  that f (x) G g(x),
or f (x) = 0, we are  using it in this sense, and there is no reference  to
any  numerical value of x. But when we make an assertion about ‘the
roots of the congruence f(x) z 0’, or discuss  ‘the solution of the con-
gruence’,t it is naturally the first sense which we have in mind.

In the next section we introduce a similar double use of the symbol ‘ 1’.
THEOREM 104. (i) If p  is prime and

fm7(4  = 0 (m0W
then eitherf(x)  z 0 or g(x) E 0 (modp).

(ii) More genedly,  if
f(x)@)  = 0 (modpa)

and f(x) + 0 (moW,
then g(x) = 0 @id@).

(i) We form fi(x)  from f(x) by rejecting all terms of f(x) whose
coefficients are divisible by p, and g,(x) similarly. If f(x) $ 0 ad
g(x) $ 0, then the first coefficients infi and g,(x) are not divisible by
p, and therefore thè first coefficient in f,(x)g,(x)  is not divisible by p.
Hence fN7(4 = fdxM4  + 0 (moG4.

(ii) We may  reject multiples of p from f (x), ad multiples of pu from
g(x), ancl  the result follows in the ssme way. This part of the theorem
Will  be required in Ch. VIII.

Iff(x) G g(x), thenf(a)  E g(a ) for a11 values of a. The converse is not
true; thus ap  G a (m0dp)

for a11  a, by Theorem 70, but
XP  E 2 (modp)

is false.

7.3. Divisibility of polynomials (mod m). We say  that ,f(x)  is
divisible by g(x) to modulus m if there is an integral polynomial h(x)
such  that f(x) z g(x)h(x)  (modm).
We then Write g(x)  If (4 (modm).

THEOREM 105. A necessaiy  and suficient  condition that

(x -u )  ]f(2:)-(modm)

is that f(a) = 0 (modm).
t e.g.  in 8 8.2.
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I f (x-4 If(x) (modm),
then f(x) E (x-a)h(x)  (modm)

for some integral polynomial h(x), and SO

f(a) E 0 (modm).

The condition is therefore necessary.
It is also  suhicient.  If

f(a) z 0 (modm),

then f(x)  = f(x)  --f(a) (mod m).
But f(z) = 2 c,x+
and fc+f@)  = (x-aP(x)?
where

h(x)  = .&9  -f(a)
,x-a
~ = x CT(5n-r-l+5n-r-2u+...+an-r-l)

is an integral polynomial. The degree of h(x) is one  less than that of
f(x)-

7.4. Roots of congruences to a prime modulus. In what follows
we suppose that the modulus m is prime; it is only in this case that there
is a simple general  theory. We Write  p for m.

THEOREM 106. If p is prime and

f(4 = d4W  (modp),
then any  root  of,f(x)  (modp) is a root  either of g(z) OT of h(z).

If,a is nny  root off(x) (modp), then

f(a)  = 0 (modp),
or g(a)h(a)  s 0 (modp).

Hence  g(a) = 0 (modp) or h(a) E 0 (modp), and SO a is a root of g(x)
or of h(x) (modp).

The condition th.at the modulus is prime is essential. Thus

x2  E ~13~4  E (x-2)(2+2) (mod4),

and 4 is a root of x2  E 0 (mod4) but not of x-2 = 0 (mod4) or of
x -t 2 z 0 (mod4).

THEOREM 107. {fi(x)  is of degree n, and  bas more than n roots  (modp),
then f(x) z 0 (modp).

The theorem is significant  only when YL < p. It is true for n = 1, by
Theorem 67; and we may  therefore prove  it by induction.
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We assume then that t’he  theorem is true for a polynomial of degree
less than n. Iff(z)  is of degree n, andf(a)  E 0 (modp), then

f(x)  = (x-(~)g(x)  bodp),
by Theorem 105; and g(z) is at most  of degree n- 1. By Theorem 106,
any  root of f( )z is either a or a root,  of g(x). If f(z) has more than n
roots, then g(x) must  have more t:han n- 1 roots, and SO

g(x)  = 0 (modp),
from which it follows that

f(x) zz 10  (modp).
The condition tQat  the modulus is prime is again  essential. Thus

x4-1  z 0 (mod 16)
has 8 roots.

TFe  argument proves also
THEOREM 108. Jjf(x) bas its fuZZ  number of roots

2j...,  a, (modp),
t h e n f(x) E c,(~~~l)(x--u2)...(x-un)  (modp).

7.5. Some applications of th‘e  general theorems. (1) Fermat’s
theorem shows that the binomial congruence
(7.5.1) xd e Il (modp)
has its full  number of roots when cl  = p- 1. We cari  now prove that
this is true when d is any  divisor of p - 1.
THEOREM 109. If p is prime und  d 1 p- 1, then the congruence (7.5.1)

hus d roots.
We have xp-l-- 1 =:  (xd- l)g(x)

where g(x) = x-f+x-+...ixd+1.
Now xn-l-1  z 0 has p-l roots, and g(x) z 0 has at most p-l-d.
It follows, by Theorem 106, that xd-1 G 0 has at least d roots, and
therefore exactly d.

Of the d roots of (7.5.1),  some Will  belong to d in the sense of $ 6.8, but
others (for example 1) to smaller d.ivisors  of p- 1. The number belong-
ing to d is given by the next theorem.
THEOREM 110. Of the d roots of (7.5.1),  $(d)  beZong  to d. Inpurticulur,

there are +(p- 1) primitive roots of  p.
If#(d) is the number of roots belonging to d, then

d,z1 vw) = P- 1,

since  each  of 1, 2,..., p- 1 belongf,  to some d; and also

d,qw)  = P-1,
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by Theorem 63. I:f we cari  show that #(d) < $(d), it Will  follow that
$(d) = 4(d) for each  d.

If #(d) > 0, then one  at any  rate of 1, 2 ,...,  p - 1, say  f, belongs to d.
We consider the d :numbers

fh  =fh (0 < h < d-l).

Each of these numbers is a root of (7.5.1),  sincefd  G 1 impliesfh”  = 1.
They are incongruent (modp), since  f h = f h’, where h’  < h < d, would
imply f k G 1, w:here  0 < k = h-h’ < d, and then f would not belong
to d; and therefore, by Theorem 109, they are a11 the roots of (7.5.1).
Finally, if fh belongs to d, then (h, d) = 1; for k 1 h,  k 1 d, and k > 1
would imply (fh)d’k  = (fd)h”  E 1,

in which case f h would belong to a smaller index than d. Thus h must
be one  of the 4(d) numbers le& than and prime to d, and therefore
#(d) < W).

We have plainly proved incidentally

!L’HEOREM  111. If p is an odd prime, then there are numbers  g such
thclt 1, g, g2 ,...> gz’-2  are incongruent modp.

(2) The polynomial f (ix)  = s-l-  1
is of degree p--l and, by Fermat’s theorem, has the p-l ‘roots
1) 2, 3,. . . >p-l (modp). Applying Theorem 108, we obtain

THEOREM 112. Jf p is prime, then
(4.5.2) ~j~--~-l G (z-l)(z-2)...(2-pfl)  (modp).

If we compare the constant terms, we obtain a new proof  of Wilson’s
theorem. If we compare the coefficients of xP-~,  xp-3,...,  x, we obtain

THEOREM 113. If p is an odd prime, 1 < 1 < p- 1, and A, is the
sum of the prodwts of 1 different members of the set 1, Z,..., p-l, then
A, G 0 (modp).

We cari use Theorem 112 to prove Theorem 76. We suppose p odd.

Suppose thet 78  = TP-9 (r > l ,o < 9 < p).
T h e n

(p+;-1)  = wrt,;~;;;  = (rp-s+l)(rp-s+2)...(~p-8+p-l)
(P-l)!

is an integer i, and
(rp-s+l)(rp--s+2)...(rp-s+p-1)  =,(p-l)!i E -i (modp),

by Wilson’s theorern (Theorem 80). But the left-hand side is congruent to

(s-  l)(s-2)...(s-p+  lj - G--l-  1 (modp),

by Theorem 112, anqd  is therefore congruent to - 1 when s = 0 and to 0 otherwise.
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7.6. Lagrange% proof of Fermat’s and Wilson’s theorems. We
based our proof  of Theorem 112 on Fermat’s theorem and on Theorem
108. Lagrange, the discoverer of the theorem, proved it directly, and
his argument contains  another proof  of Fermat’s theorem.

We suppose p odd. Then

(7.6.1) (x-1)(x-2)...(z-p+l)  ==  zp-1-A,zp-2+...+A,_,,

where A,,... are defined as in Theorem 113. If we multiply both sides
by x and change x into x- 1, we have

(z-1)~-A1(2-l)~-l+...+Ap-1(x-l) = (x-1)(x-2)...(x-p)

= (x-p)(x~-l-A1x@+..*+Ap-l).

Equating coefficients, we obtain

0; SA,  = I?f&
(+(Y’)

A,+4 = PA,+&

($ +?;‘)A,+  ~;2)4+A, = PA,+A,,

and SO on. The first equation is an identity; the others yield in suc-
cession

. .  .  . . . .  . . .  .

(p-l)A,-,  = l+.A,+A,+...+A,-,.

Hence  we deduce successively

(7.6.2) ~14,  PIA,, -.a>  ~14-29

and finally (p-l)A,-,  = 1 (modp)

or

(7.6.3) A,-, = -1 (modp).

Since A,-, = (p-l)!, (7.6.3) is Wilson’s theorem; and (7.6.2) and
(7.6.3) together give Theorem 112. Finally, since

(2--1)(x-2)...(z-.p+l)  z 0 (modp)

for any  x which is not a multiple of p, Fermat’s theorem follows as a
corollary.

7.7. The residue of {+(p-  1)) !. Suppose that p is an odd prime and
w = i(p-1).
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From
(P-l)!  == 1.2...$(~-l){p-&-l)}{p-;(p-3)}...(s)-1)

e (- l)“(~!)~  (modp)
it follows, by W:ilson’s  theorem, that

(w!)~  E (- l)w-l  (modp).
We must now distinguish the,two cases p = 4n+  1 and p = 4n+  3.

If p = 4n+  1, then
(w!)~  G -1 (modp),

SO that (as we proved otherwise in $6.6) - 1 is a quadratic residue ofp.
In this case W! is congruent to one  or other of the roots of x2  = -1
(modp).

If p = 4n+3,  then
(7.7.1) (w!)~  G 1 (modp),
(7.7.2) W !  s fl  (modp).
Since  - 1 is a non-residue of p, the sign in (7.7.2) is positive or negative
according as m!  is a residue or non-residue of p. But w! is the product
of the positive integers less than +p,  and therefore, by Theorem 85, the
sign in (7.ï.2) is positive or negative according as the number of non-
residues of p less than +p  is even or odd.

THEOREM 114. If p is a prime  4n+3,  then
{&(p--l))!  E (-1)y  (modp),

where  v is the  number  of  quadratic  non-residues  less  than  $p.

7.8. A theorlem  of Wolstenholme. It follows from Theorem 113

that the numerator of the fraction

is divisible by $1;  In fact the numerator is the A,-, of that theorem.
We cari,  however, go farther.

THEOREM 115. If p is a prime  greater  than  3,  then  the  numerator of the
fraction

Y

(7.8.1)

is dicisible  by p2’.
The result is false  when p = 3. It is irrelevant whether the fraction

is or is not reduced to its lowest terms, since  in any  case the denominator
cannot  be divisible by p.

The theorem may  be stated in a different form. If i is prime to m.,
the congruence ix zz 1 (modm)
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has just one  root, which we call  the associate of i (modm).?  We may
denote this associate by I, but it is often convenient,  when it is plain
that we are concerned with an integer, to use the notation

(or l/;).  More generally we may,  in similar circumstances, use
b-.
a

(or b/a)  for the solution of ax E b.
We may  then (as we shall see in a moment) state Wolstenholme’s

theorem in the form

THEOREM 116. If P B 3, and ljz:  is the associate of i (modp2),  then

l+k+i+...+,&  z 0 (modp2).

W.e  may  elucidate the notation by proving first that

(7.8.2) l+i+i+...qG--&  E 0 (modp).$

For this, we have only to observe that, if 0 < i < p, then
1i.:s  1,
z (PHp+ E 1 (modp).

Hence
1F E 0 (modp),

P-2

;+L . z 0 (modp),
P-2

and the result follows by summation.
We show next that the two forms of Wolstenholme’s theorem

(Theorems 115 and 116) are equivalent. If 0 < x < p and CZ is the
associate of x (modpa), then

“(p-l)!  = .,(P-‘)!  _ (P-l)!
X
z (modp2).

Hence

the fractions on the right having their common interpretation; and the
equivalence  follows.

t As in 5 6.5, the a of 5 6.5 being now 1.
1 Here, naturally,  I/i  is the associate of i (mod p). This is determinate (mod p). but

indeterminste (mod ~2)  to the extent of an rtrbitrary  multiple of p.
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TO prove the theorem itself we put x = p in the ident,ity  (7.6.1).
This gives

(p--l.)! = pp-1-A,pp-~+...-A,-2p+AP+
But A,-, = (p-l)!, and therefore

p~-2-A,pp-3+...+A,-3p-AP-2  = 0.
Since  p > 3 and P 14, P l&...>  PI  AP-s>
by Theorem 1113,  it follows that p2 / AP+, i.e.

p2j(p-l)!
(
l+;+...+p--  .

)
This is equivalent to Wolstenholme’s theorem.

The numerat’or  of
c,  = 1+;+...+--’

(P- Il2
is A&,--2A,-,  A,-,,  and is therefore divisible by p. Hence

THEOREM 117. If p > 3, then  C, s 0 (modp).

7.9. The theorem of von Staudt. We conclude this chapt,er  by
proving a famous  theorem of von Staudt concerning Bernoulli’s numbers.

Bernoulli’s numbers are usually defined as the coefficients in the
expansiont  5

- - -  =ez-.  1 1-&~+$~2-~~4+ffd3-,..  .

We shall find it’ convenient to write

SO that /3,,  = 1, b1  = -4 and

B2k =  (-l)k-lBk,  &k+l  =  0 (k 2 1).
The importance of the numbers cornes primarily from their occurrence
in the ‘Euler-Maclaurin sum-formula’ for 2 mk.  In fact

(7.9.1) lk-kZk+...+(?z-1)”  = 2 &+=‘8,
t-0 .

for k > 1. For the left-hand side  is the coefficient of xk+l  in

k!z(l+e5+e25f...+e(lt-1)5)  = k!xE  = k!&(erz--1)

1+-x+-x2+...
l! 2! )(

nx+qf+...);

and (7.9.1) follows by picking out the coefficient in this product.
t This expansion is convergent whenever  1x1  < 2~.
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von Staudt’s theorem determines the fractional part of B,.

THEOREM 118. -rf  k > 1, then

9 1

(7.9.2) (- .l)kB,  E Y I (mod  l),
LP

the summation being extended  over  thc: primes p such  that (p- 1) j2k.

Forexample,ifk=l,then(p-l)12,whichistrueifp=2orp=3.
Hence  -B, = ++$  = b;  and in fact B, = 6. When we restate  (7.9.2)
in terms of the p, it becomes

(7.9.3) k&+  c A = i,
b-l)lk  ’

where
(7.9.4) k = 1, 2, 4, 6 ,...

and i is an integer. If we define  l k(p) by

Ek(r))  =  1 ( ( P - 1 )  1 kL Ek(l?)  = o ((P-l)/k)a

then (7.9.3) takes the form

(7.9.5)

where p now runs through a11  primes.
In particular von Staudt’s theoreim  shows that there is no squared

factor  in the denominator of any  Bernoullian number.

7.10. Proof of von Staudt’s theorem. The proof  of Theorem 118

depends upon the following lemma.
P - l

THEOREM  119: & mk  E -Q.(P)  (modp).

If (p-l) 1 k, then mk  E 1, by Fer:mat’s theorem, and

zrnk  -p-l G -1 E -ek(p) (modp).

If (p- 1) ,j’  k, and g is a primitive root of p, then

(7.10.1) gk  $ 1 (modz4
by Theorem 88. The sets g, 2g ,...,  (p-1)s and 1, 2 ,...,  p-l are equi-
valent (modp), and therefore

Z: (Wk = 2 mk  (modp),
(gk-1)  2 mk  E 0 (modp),

and zmk=O= -‘k(l))  (modz4,

by (7.10.1). Thus 1 mk  f -ek(p) in any  case.
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We now prose Theorem 118 by induction, assuming that it is true for
any  number 1 of t$e sequence  (7.9.4) less than lc,  and deducing that it
is true for k.  In what follows k and 1 belong to (7.9.4),  r runs from
0 to k,  &=  1. and&=&= . . . = 0. We bave  already verified the
theorem when k == 2, and we may  suppose Ic  > 2.

It follows from (7.9.1) and Theorem 119 that, if w is any  prime

or

k
Ek(Wm)  + c~ w~+~-~&  E 0 (mod W)

r=o

(7.10.2) Pr+‘@+  ‘2  &r(~)wk-l-r(w&.)  z 0 (modl);
r=o

there is no term in fikPl,  since  /3,-, = 0. We consider whether the
denominator of ‘1 k

uk~r  = ,7+-r~ wk-1-ywpJr
cari  be divisible b;y  w.

0

If r is not an 1,  ,!3,  is 1 or 0. If r is an 1,  then, by the induetive hypo-
thesis, the denominator of 8,.  has no squared factor,f  and that of W&

is not divisible by w. The factor k

0 r
is integral. Hence the denomina-

tor of Uk,?  is divisible by w only if that of
wk-l-r wS-l

Ic+l-r= sfl

ii divisible by VJ. In this case

s+1>7+.

Sut  s = k-r ;S  2, and therefore

sfl < 25  < d;

a’ contradiction. It follows that the denominator of uk,,  is not divisible
by w.

Hence

where w 1 b,;  and.

pe+g-l  = F,
k

F (p # w)

is obviously of the same  form. It follows that

(7.10.3)

t It Will  bo observed  that we  do not need the full force of the inductive hypothosis.
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where B, is not divisible by pr.  Sinoe m is an arbitrary prime, B, must
be 1. Hence the right-hand side  of (7.10.3) is an integer ; and this proves
the theorem.

Suppose in particular that k is a prime of the form 3n+  1. Then
(p-l) / 2k only if p is one  of 2, 3, k+l,  2k+l.  But k+l  is even, and
2kfl = 6nf3  is divisible by 3, SO that 2 and 3 are the only permissible
values of p. Hence

THEOREM  120. 1f k is a prime oj  the  j’orm  3n+  1, then

B, E Q (mod 1).

The argument cari  be developed to prove that if k is given, thero are
an inflnity  of 1 for which Bl has the same  fractional part as B,; but for
this we need Dirichlet’s Theorem I!j  (or the special  case of the théorem
in which b = 1).

NOTES ON C!HAPTER  VII

$5 7.2-4. For the most part we follow Hecke, § 3.
3 7.6. Lagrange, Nouveaux mémoires de I’AcoxGmie  royale de Berlin, 2 (1773),

125 (QZuvres,  iii. 425). This was,the first published proof  of Wilson’s theorem.
$ 7.7. Dirichlet, Journalfür  Math. 3 (1828), 407-8 (Werke,  i. 107-8).
3 7.8. Wolstenholme, ‘Quarterly Journal of Math. 5 (1862), 35-39. There are

many generalizations of Theorem 115, some of which are also generalizations of
Theorem 113. Seo  $ 8.7.

The theorem has generally been described as ‘Wolstenholme’s theorem’, and
we follow the usual practice. But N. Rama Rao [Bull. Calcutta Math. Soc. 29
(1938), 167-701  has pointed out  that it, and a good many of its extensions, had
been anticipated by Waring, Meditationes  algebraicae, ed. 2 (1782), 383.

$0 7.9-10. von Staudt, Journal für  Math. 21 (1840), 372-4. The theorem was
discovered independently by Clausen,  Astronomische  Nachrichten,  17 (1840), 352.
We follow a proof  by R. Rado, Journai:  London Math. Soc. 9 (1934), 85-8.

Theorem 120, and the more general theorem referred to in connexion with it,
are due to Rado (ibid. 88-90).



VIII

CONGRUENCES TO COMPOSITE MODULI

8.1. Linear congruences. We have supposed since  5 7.4 (apart
from a momentary digression in 8 7.8) that the modulus m is prime.
In this chapter we prove a few theorems concerning congruences to
general moduli. The theory is much  less simple when the modulus is
composite, and we shall not attempt any  systematic discussion.

We considered the general linear congruence

(8.1.1) ux = b (modm)

in 5 5.4, and it Twill be convenient to recall  our results. The congruence
is insoluble unless

(8.1.2) d = (a, m) 1 b.

If this condition is satisfied, then (8.1.1) has just d solutions, viz.

where .$  is the unique solution of

We consider :next a system

(8.1.3) a,z  =_  b,  (modm,), ugx  = b, (modm,),...,  ukx  = b, (modmJ.

of likear  congruences to coprime  moduli m,, m2,...,  mk. The system Will
be insoluble unless (ai,  mi)  1 bi  for every i. If this condition is satisfied,
we cari  solve each  congruence separately, and the problem is reduced
to that of the solution of a certain number of systems

(8.1.4) x = ci  (modm,), zz = c2 (modm,), . . . . z = ck (modmJ.

The mi here are not the same  as in (8.1.3); in’fact the mi  of (8.1.4) is
mi/(ui,  mi) in the notation of (8.1.3).

We Write
m = m,m,... mk = ml Ml  = m2  M, = . . . = mi Mk.

Since  (mi,  Mi)  = l,,  there is an ni  (unique to modulus mi)  such  that

niMi  = 1 (modmo.
I f
(8.1.5) x = n,Mlc,+n,M,c,+...+n,Mkc,,
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then x E ni Mi  ci  3 ci  (modmi) for every i, SO that x satisfies (8.1.4).
If y satisfies (8.1.4),  then

y E ci  E x (modmJ
for every i, and therefore (since  the mi  are coprime), y G x (modm).
Hence the solution x is unique (mod m).

T H E O R E M  121. 1f  m,, ms, ,.., mk  ure  coprime, then the systém  (8i1.4)
bas a unique solution (modm) given  15y  (8.1.5).

The problem is more complicated when the moduli are not coprime. We
content ourselves with an illustration.

Six professora  begin courses of lectures on Monday, Tuesday, Wedneaday,
Thursduy,  Friday,  and Saturday,  and announce  their intentions of lecturing  at
intervals  of two, three, four, one,  six, and $ve  days respectively. The regulations
of the university forbid Sunday lectures (SO  that a Sunday lecture must  be omitted).
When jîrst Will a11  six professors jînd themselves  compelled to omit a lecture ?

If the day in question is the xth (counting from and including the first
Monday), then

x  =  1+2k,  = 2+3k,  =  3+4k,  =.44-k,  =  5+6k,  =  6+5k,  =  7k,,

where the k are integers; i.e.
(1) x E 1 (mod2), (2) x = 2 (mod3), (3) x 3 3 (mod4), (4) x E 4 (mod l),

(5) x G 5 (mod6), (6) x = 6 I(mod5), (7) x = 0 (mod7).
Of these congruences, (4) is no restrictiomn,  and (1) and (2) are included in (3)
and (5). Of the two latter, (3) shows that x is congruent to 3, 7, or 11 (mod 12),
and (5) that z is congruent to 5 or 11, SO that (3) and (5) together are equivalent
to x E 11 (mod 12). Hence the problem .is that of solving

x 3 11 (mod 12), x = 6 (-mod5), xzO(mod7)
or x  = - 1  (mod12), x 3 1 (Imod5), x = 0 (mod 7).

This is a case of the problem solved by Theorem 121. Here
m, = 12, m2 = 5, m3  = 7, m = 420,

Ml = 35, Mz = 84, M3 = 60.
The n are given by

35n,  3 1 (mod 12), 84n,  E 1 (mod5), 6On,  = 1 (mod7),
or -ni  3 1 (mod12), -n,  = 1 (mod5), 4n,  3 1 (mod7);
and we cari  take ni = - 1, n2  = - 1, n3  == 2. Hence

x = (-l)(-1)35+(-1)1.84+2.0.60  = -49 = 371 (mod420).
-The  first x satisfying the condition is 371..

8.2. Congruences of higher degree. We cari  now reduce the
solution of the general congruencet
(8.2.1) f(x) E 0 (modm),
where f (x) is any  integral polynomial, to that of a number of congruences
whose moduli are powers of primes.

t See 8 7.2.
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Suppose that m = m1m2 . . . mk,

no two mi  having a common factor. Every solution of (8.2.1) satisfies

(8.2.2) f(x) E 0 (modmJ (i = 1,2  ,...,  k).

If Cl>  Cz,..., ck is a set of solutions of (8.2.2),  and x is the solution of
(8.2.3) z G ci  (modmJ (i = 1, 2,..,  k),
given by Theorem 121, then

f(z) -f(ci)  = 0 (modmJ
and thereforeJ’(s)  z 0 (modm). Thus every set of solutions of (8.2.2)
gives a solution of (8.2.1),  and conversely. In particular

THEOREM  122. The number of roots of (8.2.1) is  the product  of the
wumbers  of root,s  qf  the separate congruences (8.2.2).

If m = pflpaa . ..pp. we may  take mi  = pi’.

8.3. Congruences to a prime-power modulus. We  have now
to consider the congruence
(8.3.1) f(z) G 0 (modpa),

where p is  prime and  a > 1.
Suppose first,  that x is a root of (8.3.1) for which

(8.3.2) 0 < x < pa.
Then x satisfies
(8.3.3) f(x) z 0 (modpa-l),
and is of the form
(8.3.4) f+sPa-l (0 G s < p),
where f is a root of (8.3.3) for which

(8.3.5) 0 < ( < pa-1.

Next, if 8 is a root of (8.3.3) satisfying (8.3..5),  then

f(&-sp”-‘1  =f(E)+sp”-‘f’(S)+‘2s~p2~~2f”(~)+...

= f(Q+sp”-Y’(t)  (modp%
since  2a-2  3 CC,  Zla-3  3 a,..., and t*he  coefficients in

f ‘k’(L)
k!

are integers. We  .have  now to distinguish two cases.
(1) Suppose tha,t

(8.3.6) f ‘(5)  + 0 (modp).
Then [+sp”-l  is a,  root of (8.3.1) if and only if

f(E)+v-Y’(t)  = 0 (modp”)
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sf’(f) = -fA (modp),
.Pa-l

and there is just one  s (modp) satisfying this condition. Hence the
number of roots of (8.3.3) is the same  as the number of roots of (8.3.1).

(2) Suppose that

(8.3.7) f’(t)  =i 0 (modp).

T h e n f(6+spa-l) =y f(f) (modp?.
If f(t) $ 0 (modp”),  then (8.3.1) is insoluble. If f(t) G 0 (modpa),
then (8.3.4) is a solution of (8.3.1) for every s, and there are p solutions
of (8.3.1) corresponding to every solution of (8.3.3).

THEOREM 123. The number of solutions .of  (8.3.1) corresponding to a
solution 5 of (8.3.3) is

(a) none,  iff’(f) E 0 (modp) and  < is not a solution of (8.3.1);

(6) one,  iff’(t3 $ 0 (modp);
(c) p, i”ff’(f) z 0 (modp) and  .$  is a solution of (8.3.1).

The solutions of (8.3.1) corresponding to 5 may  be derived from [, in case
(b) by the solution of a linear congruence, in case (c) by aclding  any  multiple
of pa-1  to %$.

8.4. Examples. (1) The congruence
f(x) = ~p-~---l E 0 (modp)

has the p-l roots 1, 2,...,  p-l; and if 8 is any  one  of these, then

f’(5) = (~-l)cp-~  $ 0 (modp).

Hence f (x) E 0 (modp2) has just p- 1 roots. Repeating the argument,
we obtain
THEOREM 124. The congruence

~p-~---l  z: 0 (modpa)

has just p- 1 roots for every a.
(2) We consider next the congruence

(8.4.1) f(z) = &(P-i)--1  E 0 (modpz),

where p is an odd prime. Here

f’(f) = $p(p-l)f*P(P-l):l  E 0 (modp)

for every 6.  Hence there are p roots of (8.4.1) corresponding to every
root off(x) z 0 (modp).

Now, by Theorem 83,
x*(p-l)  c -&l  (modp)

5591 H
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according as x is a quadratic residue or non-residue of p, and
x*P(P--l)  G fl (modp)

in. the same  cases. Hence there are *(p-l)  roots of f(z) EE  0 (modp),
and $p(p- 1) of (8.4.1).

We define  the quadratic residues and non-residues of p2 as we defined
those of p in $ 6.5. We consider only numbers prime to p. We say  that
2 is a residue ofp2  if (i) (x,p)  = 1 and (ii) there is a y for which

y2  z x (modp2),
and a non-residue if (i) (2,~) = 1 and (ii) there is no such  y.

If x is a quadratic residue of p2, then, by Theorem 72,
X~P(P-1)  s y~@-1) G  1 (modpz),

SO that x is one  of the $p(p-1)  roots of (8.4.1). On the other hand,
if y1  and y2  are two of the p(p- 1) numbers less than and prime to p2,
and y: s y&  then either y2  = p2-y,  or yr-y2 and y1+y2 are both
divisible by p, which is impossible because y1  and y2  are not divisible
by p. Hence thie  numbers y2  give just $p(p-1)  incongruent residues
(modp2),  and there are +p(p-1)  quadratic residues of p2, namely the
roots of (8.4.1).
THEOREM 125. There are +p(p-1)  quadratic residues of p2, and these

residues are the roots of (8.4.1).

(3) We consider finally the congruence
(8.4.2) f(z) = x2-c  E 0 (modpa),
where p 1 c. If p is odd,.then

f’(5) = 25 $ 0 (modp)

for any 5 not divisible by p. Hence the number of roots of (8.4.2) is the
same  as that of the similar congruences to moduli pa-l,  P~-~,...,  p; that
is to say,  two or none, according as c is or is not a quadratic residue of p.
We could use this argument as a substitute for the last paragraph of (2).

The situation is a little more complex  when p = 2, since  then
f’(f) E 0 (modp) for every 4.  We leave it to the reader to show that
there are two roots or none  when a = 2 and four or none  when a 3 3.

8.5. Bauer’s identical congruence. We denote by t one  of the
4(m)  numbers less than and prime to m, by t(m) the set of such  numbers,
and bv
(8.5.1  j f,(x) =tg (x-t)
a product  extended over  a11 the t of t(m). Lagrange’s Theorem 112
states that
(8.5.2) f,(x)  G xhm)-  1 (modm)
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when m is prime. Since
z+@)-  1 z 0 (modm)

99

has always the 4(m)  roots t, we might expect (8.5.2) to be true for a11  m;
but this is false. Thus, when m = 9, t has the 6 values &l,  f2, -l4
(mod 9),  and

f,(x)  E (x2--  1z)(z2-22)(x2-42)  E x6-3x4+3z2-  1 (mod 9).

The correct generalization was found comparatively recently by
Bauer, and is contained in the two theorems which follow.

THEOREM 126. If p is an odd prime divisor of m, and pa is the highest
power of p which divides m, then
(8.5.3) f,(z)  ==  tgj (x-t) = (z~~-~--~)~(~)~P-~)  (modp”).

In particular
(8.5.4) f,.(r)  = J-J (z-t) = (zp-i-- l)@‘-’  (modpa).

THEOREM 127. 1f  m is even, m :> 2, and 2a  is the highest power of 2

which divides m, then
(8.5.5) f,(z)  E (x2- 1)+4(m)  (mod 2”).

In particular
(8.5.6) f2.(x)  c (x2- 1 j2’-*  (mod 2a)

when a > 1.

In the trivial case 71~  = 2,.fi(z)  = z- 1. This falls  under (8.5.3) and not under
(8.5.5).

We  suppose first that p > 2, and begin by proving (8.5.4). This is
true when a = 1. If a > 1, the numbers in t(p”) are the numbers

tfvpa-l (0 < Y < p),
where t is a number included in t(p”-l).  Hence

P - l

fp44 = y=gfîl.-l(=~Pa-l).

But fp.-l(x--Vpa-l)  G fp.-l(x)-~pu-lf&l(x) (modpa);
and f,.(x)  E {fp”-‘(z)}p- ;r V.p~-~{fp’-‘(X)}p-lf;fp._,(5)

FG {fp.-l(x)}p  (modp”),

since 1 Y = &p(p- 1.) E 0 (modp).

This proves (8.5.4) by induction.
Suppose now that m = paM and that p ,/’  M. Let t run through the

#(p”) numbers of t(p”) and T through the 4(M)  numbers of t(M). By
Theorem 61, the resulting set of +(m)  numbers

tM+  TP”,
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reduced modm, is just the set t(m). Hence

fin(z)  = iR (z-t) = n n (z-tM-Tpa) (modm).
!2w(M)  tet(p)

For any  fixed T, since (pu,  M) = 1,

&l,  @-~M-!~‘P’Y  = #, (-tM)  = J& (x-t)  = f,44  (moW7.

Hence, since there are +(M) members of t(M),

f,(z) E (d-l-  l)p’-‘+(113)  (modpa)

by (85.4). But (85.3)  follows at once, since

pa-l~(+w)
j&(M) = py.

8.6. Bauer’s congruence : the case p = 2. We have now to con-
sider the case p = 2. We begin by proving (8.5.6).

If a = 2, fa(z)  = (x-1)(x-3)  E x2-1 (mod4),

which is (8.5.6). When a > 2, we proceed by induction. If

f2a-1(z)  s (~“-1)~~~’  (mod 2a-1),

then f&-l(x)  E 0 (mod2).
Hence J20(2)  = f249f24x-2’4)

E {fi~-l(x)}“-2”-l~~-l(~)f~-l(x)

E {f,.-,(x)}”  = (x2- 1)2”-*  (mod 2”).

Passing to the proof  of (8.5.5),  we have now to distinguish two cases.

(1) If m = 2114,  where M is odd, then

fi,(z)  G (x-l)+@)  G (x2- I)*d(m)  (mod 2),

because (x- 1)2  zs x2-- 1 (mod 2).
(2) If m = 2”M, where M is odd and a > 1, we argue as in 8 8.5,

but use (8.5.6) instead of (8.5.4). The set of 4(m)  = aa-l$(M)  numbers

tM+ T 2a,

reduced modm, is just the set t(m). Hence

fm(z)  = ,)(x--t)  G n n (x-tM-2aT)  (modm)TMM)  ld(20)

= {f2a(z)}4(M)  (mod 2),
just as in 5 8.5. (8.55) follows at once from this and (8.5.6).

8.7. A theorem of Leudesdorf. We cari  use Bauer’s theorem to
obtain a comprehensive  generalization of Wolstenholme’s Theorem 115.



8.7 (128)] C O N C R U E N C E S  T O  C O M P O S I T E  M O D U L I 101

THEOREM  128. If

then
(8.7.1) S, z 0 (mod mz)

i f  2/m,  3Xm;
(8.7.2) S, z 0 (mod )mz)

i f  2/m,  31m;
(8.7.3) S, s 0 (mod im2)

if2~m,3~m,andmisnotapowerrof2;

(8.7.4) S, G 0 (mod*m2)
if 21m,  31m;  and

(8.7.5) S, 3 0 (mod am2)
if m = 2a.

We use 1, n for sums or produ.cts over the range t(m), and x’,  JJ’
for sums or products over the part of the range in which t is less than
$m;  and we suppose that m = paq’+... .

If p > 2 then, by Theorem 126,

(8.,7.6) (xp-l-- l)+(my@-l)  = n (x-t) = n’  {(x-t)(x-m+t)}

G n’  {x2+t(m-t)>  (modpa).

We compare the coefficients ofx2  on the two sides  of (8.7.6). Ifp > 3,
the coefficient on the left is 0, and

(8.7.7) 0 = n’  @(m-t)>  2’ g-t, = 3 n t 2 & (modpa).
Kence

= &9t  JJ t c 1
~ = 0 (modp2”),
t(m-t). -

or
(8.7.8) A’,,,  E 0 (modp2a).

If 2 [ m, 3 ,/  m, and we apply (8.‘7.8)  to every prime factor of m, we
obtain (8.7.1).

If p = 3, then (8.7.7) must be replaced by

(-1)*+(+1$+(m)  = 4 n t c & (mod3a);

SO that S,,  n t = (- l)*d(m)-1  *m+(m)  (mod 32a).
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Since  $(m)  is even, and divisible by 3a-1, this gives

S, E 0 (mod32u-1).

[Chap.  VIII

Hence  we obtain (8.7.2).
Ifp = 2, then, by Theorem 127,

(x2--l)*+(“) G JJ’  {$+t(m-t)}  (mod 2~)

and SO

E (- l)*i(m)-l  $m+(m)  (mod 22a).

If m = 2aM,  where M is odd and greater than 1, then

i+(m) = 2a-2Wf)
is divisible by 2a+1,  and

S, G 0 (mod22a-1).

This, with the preceding results, gives (8.7.3) and (8.7.4).

Finally, if m == 2a,  i+(m)  = 2aA, and

S, G 0 (mod22a-2).
This  is (8.7.5).

8.8. Further consequences  of Bauer’s theorem. (1) Suppose that

m > 2, 4(m)
m ==  ma, u2  = +$(Tn),  UP  = -p-l (P > 2).

Then 4(m)  is even and, when we equate the constant terme in (8.5.3)
and (8.5.5),  we obtain

&‘$  t = (-l)% (modp”).

It is easily verified that the numbers  u2 and uP  are a11 even, except
when m is of one  of the special  forme  4, pa, or 2pa;  80  that n t E 1
(mod m) except in these  cases. If m = 4, then n t = 1.3 = - 1 (mod 4).
If m is pa or 2p”,  then uP  is odd, 80  that JJ t E - 1 (modpa)  and there-
fore (since  n t is odd) T]c t G -1 (modm).

THEOREM 129: t(m  t E fl (modm),
?

where the negative sign is to be  chosen  when m is 4, pa, or 2pa, where p
is an odd prime, Nand  the positive sign in a11 other cases.

The case m = p is Wilson’8 theorem.

(2) If p > 2 and

f(z) =)-p-q = ZI(P’)-AIZ~(pa)-l+...,
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thenf(z) = f(p”--x).  Hence

2A,~<o")-l+2A,z~(p")-3+ **- = f(-4-f@) = f(p"+4-f(4

E paf’(x) (modp2”).

But p”f’(x)  E pyp-  1)ZP-~(XP-~- l)~‘-‘-l  (modp2”)

by Theorem 126. It follows that Azvfl is a multiple of p2a  except  when

+(~a)-2v--1 = p-2 (modp-1),

Le. when 2~  = 0 (modp-1).

THEOREM 130. 1f &+i is the sum  of the homogeneous products, 2v+ 1
ut a time, of the ‘numbers  of t(p”),  and 2v  is not a multiple of p-l, then

A 2v+l  E 0 (modp2a).

Wolstenholme’s theorem is the case

a = 1, 2v+1  ==  p - 2 , p > 3.

(3) There are also interesting theorems concerning the sums

x
1

2v+1  = c-*t2v+1

We confine ourselves for simplicity to the case a = 1, m = p,t and
suppose p > 2. Then f (x) = f (p-x) and

f t-4  = f (p+x)  = f (4fPf  ‘(4,

f ‘(-x) = -f ‘(p+x;I  G -f ‘(x)-pf “(x),

f (x)f ‘(-x)+f  ‘(x)f (-xl1 = P{f ‘2(4-f Wf “(4

to modulus p2. Since  f (x) E xp-l-  1 (modp),

f ‘“(x)-f (x)f “(x) EE ~xP-~-x~P-~  (modp)
and SO

(8.8.1) f (x)f’(-x)+f  ‘(x)f (-2)  E: ~(~xP-~-x~P-~)  (modp2).

Now flo =
f(x) c 1 = -4-xL9,-xw3  -... .$

x - t

(8.8.2) f (x)f ‘(-x)+f  (-x)f  ‘(xj  = -2s1-2x2~3-.**.
f (x)f (-x)

t In this cash Theorem  112 is sufficient l’or oui  purpose,  and w8 do not require  the
general  form of Bauer’s  theorem.

$ The series  which follow are ordinary  power  series  in the variable z.
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Also

f(x) = 11 (x-t) = n (t-x) = w(l+y+$+...),

f(z) -L
--=-

(
1+%+F+...  ,

1

(8.8.3) j&q  = >

where .ZU  == (p-l)! and the cc,  b, and c are integers. It follows from
(8.8.1),  (8.8.2), a#nd  (8.8.3) that

-2x,-2x28,--...  = P(2~~-3-~2p-4)+P2g(~)  1 ; %X2  ; %X4  I
W2 (

,.
i

w2 w4 . ’

where g(x) is an integral polynomial. Hence, if 2v -=c  p-3, the numera-
tor of S,,,, is divisible by p2.

THEOREM 131.. If p is prime, 2~ < p-3, and

then the numerator of S2,,+l  is divisible by p2.

The case Y = 1D is Wolstenholme’s theorem. When Y = 1, p must be
greater than 5. The numerator of

is divisible by 5 but not by 52.
There are many  more elaborate theorems of the same  character.

8.9. The residues of 2p-l  and (p-l)! to modulus p2. Fermat’s
and Wilson’s theorems show that 2p-l and (p-l)! have the residues
1 and -1 (modp). Little is known about their residues (modpt),  but
they cari  be transformed in interesting ways.

THEOREM 132. if  p is an odd prime, then

(8.9.1) zi$d s 1+;+;+.*.+ p&2  (modp).

In other words, the residue of Zp-l (modp2) is

lfp 1+k+i+...+’  >
( 1P - 2

where the fractions indicate associates (modp).
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We have

2p  = (l+l)P  = l+(7)+...+(;)=  2+7($.

Every term on the right, except the first, is divisible by p,t  and

P
01 == pxl,

where
Z! xl  = (p- l)(p-2)...(p--+-  1) E (- l)l-‘(Z-  l)! (modp),

or ZX~  s (- l)l-l  (modp).

Hence
x,  E (- l)‘--li  (modp),

P01
= pxl  ‘c (- 1)“pf (modp2),

P-l

(8.9.2)
2p--2
r,  = 2 xl  E l-~.+~-...-p~  (modp).

1
But

1. ..---=2
P - l

by Theorem 116,$  SO that (8.9.2) is equivalent to (8.9.1).
Alternatively, after Theorem 116, the residue in (8.9.1) is

1 1- - - - -
2 4

...--p$  (modp).

THEOREM 133. If p is an odd prime, then

(p-l)! E

Let p = 2n+l.  Then

(2n)!
_~ =y=  1 .3...(2n-1)  =- (p-2)(p-4)...(p-an),2”n!

(-1))~~~~~ E 2%!-2%!p (modp2)

E 2”n!+2nn!(22n-l)  (modp2),

by Theorems 116 and 132; and
(an)!  SE ( -1 ) 7~ S!Jn(n!)z  (modp2).

t By Theorem75. $ We need only (7.8.2).
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NOTES ON CHAPTER VIII
$ 8.1. Theorem 121 (Gauss, D.A., Q 36) was known to the Chinese  mathemati-

cian Sun-Tsu in thLe  fi& Century A.D. See Bachmann, Niedere  Zahlentheorie,  i. 83.
$ 8.5. Bauer, Nouvelles annales (4), 2 (1902), 25664. Rear-Admira1 C. R.

Darlington suggested the method by which 1 deduce (8.5.3) from (8.5.4). This is
much  simpler than that used in earlier editions, which was given by Hardy and
Wright, Jownal  London  Math. Soc. 9 (1934), 38-41 and 240.

Dr. Wylie points out to us that (8.5.5) is equivalent to (8.5.3),  with 2 for p,
except  when rn is a power of 2, since it may  easily be verified  that

(z*-  l)i$trn)  - (z-  1)6(ln)  (mod2a)
when rn = 2aM,  iM is odd, and M > 1.

§ 8.7. Leudesdorf,  Proc.  London Math. Soc. (1) 20 (1889), 199-212. See also
S. Chowla, Journal  London  Math. Soc. 9 (1934), 246; N. Rama Rao, ibid. 12
(1937), 247-50; and  E. Jacobstal,  Forhard.  K. Norske  Videmk.  Selskab,  22 (1949),
nos. 12, 13, 41.

$ 8.8. Theorem, 129 (Gauss, D.A., 5 78) is sometimes called the ‘generalized
Wilson’s theorem’.

Man y theorems of the type of Theorems 130 and 13 1 Will  be found in Leudesdorf’s
paper quoted above, and in papers by Glaisher in vols. 3 1 and 32 of the Quarterly
Journal of Mathematics.

f 8.9. Theorem 132 is due to Eisenstein (1850). Full references  to later proofs
and generalizations Will  be found in Dickson, Elistory,  i, ch. iv. See also the note
to f 6.6.



IX.

THE REPRESENTATION OF NUMBERS BY DECIMALS

9.1. The decimal associated with a given number. There is a
process for expressing any  positive number 5 as a ‘decimal’ which is
familiar in elementary arithmetic.

We Write

(9.1.1) 5 = [L]+x  = x+x,

where X is an integer and 0 < x < 1 ,t and consider X and x separately.

IfX >Oand 108  < x -< 108+‘,

and A, and X, are the quotient and  remainder when X is divided by
108,  then X = A,. 1.08+X,,

where 0 < A, = [lO-sX]  < 10, 0 < x,  < 108.

Similarly
Xl = A,. 108-1+X2 (0 < A, < 10, 0 < X, < 108-l),

X, = A,. 108-2+X, (0 < A, < 10, 0 < X, < 1O8-2),
. . . . . . . . . . . . . . .

X,-,  = A,. 10+X, (0 < A, < 10, 0 < x, < 1%

x, = As+1 (0 < A,,, < 10).

Thus X may  be expressed uniquely in the form

(9.1.2) X = A,. ~OS+A,.  ~OS-‘+...+A,.  10+A,+l,

where every A is one  of 0, 1, 2 ,..., 9, and A, is not 0. We abbreviate
this expression to
(9.1.3) X = A, A,...A,  A,+l,

the ordinary representation of X in decimal notation.
Passing to 2, we Write

x = fl (0 :<f,  < 1).

-We  suppose that a, = [lOfi], SO that

53 <fi
a,+1

10
<: 7;

a, is one  of 0, l,...,  9, and

a1 = PYJ~ lOf1  = a1+f2 (0  \c.f, < 1).
t Thus [[]  has the mono  meaning  aa in $ 6.11.
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Similarly, we define  a2,  us,...  by

a2 = POf,l, lOj2  = a2+.f3 (0 Gf3  < l),

a3 = w31, lOf3 = a,+f4 (0 <f4 < 11,
. . . . . . . . . . . . . .

Every a, is one  of 0, 1, 2 ,...,  9. Thus

(9.1.4) x = %+!.L+l~
where

(9.1.5)

We thus define  a decimal -a,a,a,...a,...

associated with x. We cal1 a,, a2,... the first, second,... digits of the
decimal.

Since a, < 10, the series

(9.1.7)
CO an
c-1 10n

is convergent; and  since  g,+1 A 0, its sum is x. We may  therefore Write

(9.1.8) x  =  a,a,a,...,

the right-hand side  being an abbreviation for the series  (9.1 .i’).
Iffn+1 = 0 for some n, i.e. if 10”~  is an integer, then

an+l = a,+2  - . . .- =o.

In this case we say  that the decimal terminates. Thus
1 7
_ = -0425000...,
400

and we Write  simply - zz -0425.
400

It is plain that the  decimal for x Will  terminate if and only if x is a
rational fraction whose denominator is of the  form 2”5fl.

Since

and

aRC1.~
[on,+1  + s2+...= Sn+1<  &

-9+&i+-* =  lo”+l;~~l~) =  &y1 on+1 10

it is impossible that every an  from a certain point on should be 9. With
this  reservation., every possible sequence  (a,) Will  arise from some x.
We define  x as the sum of the series  (9.1.7),  and x,, and gJL+l  as in (9.1.4)
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and (9.1.5). Then gn+l < 10-?’  for every n, and x yields the sequence
required.

Finally, if

(9.1.9) @=&

and the b, satisfy the conditions already imposed on the a,, then
a, = b, for every n. For if not, let aN  and b,V  be the first pair which
differ, SO that la,--b,/  3 1. Then

This contradicts (9.1.9) unless there is equality. If there is equality,
then all of aN+l-bN+l, aN+2-b1,-+,,...  must have the same  sign and the
absolute  value 9. :But then either a, = 9 and b, = 0 for n > N, or
else a, = 0 and b, = 9, and we have seen  that each  of these alternatives
is impossible. Hence  a, = b, for a11 n. In other words, different deci-
mals correspond to different numbers.

We now combine (9.1.1),  (9.1.3),  ;and  (9.1.8) in the form

(9.1.10) ( = X+x = AlA2...As+l~ala2a,...;

and we cari  sum upnour  conclusions as follows.

THEOREM 134. Any positive number 6 may  be expressed as a decimal

A, A,...A,+,~a,a,a,  . . . .

where 0 < A, < 10, 0 < A, .:  10 ,...,  0 < a, < 10,

rwt a11 A and a are 0, and an infinity  of the a, are iess than 9. If 6 > 1,
then A, > 0. There is a (1, 1) correspondence  between the numbers and
the decimals, and

‘$  ==  A,.lO”+...+A,+l+$+$+  . . . .

In what follows we shall usually suppose that 0 < t < 1, SO that
X = 0, [ = 5. In this case a11 the A are 0. We shall sometimes save
words by ignoring the distinction between the number x and the decimal
which represents it, saying, for example, that the second digit of &$ is 4.

9.2. Terminating and recurring ,decimals. A decimal which
does not terminate may  recur.  Thus

4 = .3333..., 3 = *14285714285714...;

equations which we express more shortly as
g ZZZ  .3 4 = *i42857.
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These are pure recurring decimals in which the period reaches back  to
the beginning. On the other hand,

4 = *1666...  = -16,

a mixed  recurring decimal in which the period is preceded by one  non-
recurrent  digit.

We now determine the conditions for termination or recurrence.

where (p, q) = 1,  and

(9.2.1) CL  = maxb,B),
then 10nx  is an integer for n = tu  and for no smaller value of n, SO that
x terminates at aP.  Conversely,

s+-“+...+g  = & = (i,
where q has the prime factors 2 and 5 only.

(2) Suppose next that x = p/q, (p,q)  = 1, and (q, 10) = 1, SO that
q is not divisible by 2 or 5. Our discussion of this case depends upon
the theorems of Ch. VI.

By Theorem 88, 10” E 1 (modq)

for some V, the least such  v being a divisor of 4(q). We suppose that Y
has this smallest possible value, i.e. that, in the language of 9 6.8, 10
belongs to v (modq) or v is the order of 10 (modq). Then

(0.2.2) 10”~  NS 1)~lO”x  ZZZ  ~ ZZZ  - -
Q q

= mp+F = mp+x,

where m is an integer. But

1O”x  = 10”X,+lO”gy+l  = 10”xV+fvfl,

by (9.1.4). Since  0 < x < 1, f,+i  = x, and the process by which the
decimal was constructed repeats itself from fv+i  onwards. Thus x is a
pure recurring decimal with a period of at most Y figures.

On the other hand, a pure recurring decimal *à,a,...àA  is equal to

= 10A-1a,+10X-2a2+...+a~  = p
lob- 1 -9

q

when reduced to its lowest terms. Here q j 10A--  1, and SO A > v. It
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follows that if (q, 10) = 1,  and the order of 10 (mod q) is Y, then z is a
pure recurring decimal with a period of just v digits; and conversely.

(3) Finally, suppose that

where (p,q)  = 1 and (Q,  10) = 1; th.at  tu  is defined as in (9.2.1); and
that Y is the order of 10 (mod Q).  Thien

1oPz=Lx+-
Q Q'

where p’, X, P are integers and

0 < x < 10r, O<F<&, (P, Q) = 1.

If X > 0 then 108  < X < 10s+‘,  for some s < p, and X = A,A,...A,+,;
and the decimal for Pi& is pure recurring and has a period of Y digits.
Hence

and

1O~z  = &A,  . .._ A,+,*a,a,...a,

(9.2.4) x = -b, b,...b,,  à, a2...àv,

the last s+l of the b being A,, A,,..., A,,, and the rest, if any,  0.
Conversely, it is Blain  that any  decimal (9.2.4) represents a fraction

(9.2.3). We have thus proved

THEOREM 135. The decimal for a rational number p/q  between 0 and 1
is terminating or recurring, and any  i.erminating  of  recurring decimal is
equal to a rational number. If (p,q) ==  1, q = 2U5fl,  and max(ar,p)  = CL,
then the decimal terminates after  tu digits. If (p, q) = 1, q = 2a5fi&,
where Q > 1, (Q, 10) = 1, and Y is the order of 10 (modQ),  then the
decimal contains  t.~  non-recurring and v recurring digits.

9.3. Representation of numbers in other scales.  There is no
reason except  familiarity for our special  choice  of the number 10; we
may  replace 10 by 2 or by any  greater number r. Thus

1-- =
8

;+;+;  =: ,001,

2_. = -
3

I+!!+l+!+...  =
2 22 23 24

-16,

2-- = -f+“+$+ = 4,. . .
3

the first two decimals being ‘binary’ decimals or ‘decimals in the scale
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of 2’,  the thirc.  a ‘decimal in the scale of 7’.t Generally, we speak of
‘decimals in the scale of r’.

The arguments of the preceding sections may  be repeated with certain
changes, which are obvious if r is a prime or a product of different
primes (like 2 or lO),  but require a little more consideration if r has
square divisors (like 12 or 8). We confine ourselves for simplicity  to the
first case, when our arguments require only trivial a&erations.  In 0 9.1,
10 must be replaced by r and 9 by r-l. In 5 9.2, the part of 2 and 5 is
played by the prime divisors of r.

THEOREM 136. Suppose that r is a prime or a product of diflerent
primes. Then any  positive number 5 may  be represented uniquely as a

decimal in the scale of r.  An infinity  of the digits of the decimal are less
than r-  1; with this reservation, the correspondence  between the num,bers
and the decimais  is (l,l).

Suppose further  that

O<x<l, x = ;, (p,q)  = 1.

If q = sQt8...uy,

where  s,  t,..., u are the prime factors of r,  and

P = max(~,/%...,  y),
then the decimal for x terminates ut  the pth digit. If q is prime to r,  and
v is the order of r (modq), then the decimal is pure recurring  and has a
period of v digits. If q = s’YtC..uUJ (&  > l),

& is prime to r,  and v is the order of r (mod Q), then the decimal is mixed
recurring, and has tu non-recurring and v recurring digits.$

9.4. Irrationals defined by decimals. It follows from Theorem
136 that a decimal (in any  scalejl)  which neither terminates nor recurs
must represent an irrational number. Thus

z = *0100100010...

t We  ignore the verbal contradiction involved  in the use of ‘decimal’ ; there  is no
other convenient  word.

$ Generally, when r = sAtB...uC,  we  must define  p as

max
(
aB rA , B ,..., C

)
if this number is an integer, and otherwise as the first greater integer.

11 Strictly, any ‘quadratfrei’ scale (scale whose  base is a prime or a product of different
primes). This is the only case actually covered by the theorems, but there is no difficulty
in the extension.
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(the number of 0’s increasing by 1 at each  stage) is irrational. We
consider some less obvious examples.

T H E O R E M  137: *011010100010...,

where the digit a, is 1 if n is prime and 0 otherwise, is irrational.

Theorem 4 shows that the decimal does not terminate. If it recurs,
there is a function An+B which is prime for a11 n from some point
onwards; and Theorem 21 shows that this also is impossible.

This theorem is true in any  scale. We state our next theorem for
the scale of 10, leaving the modifications required for other scales  to the
reader.

THEOREM 138 : ~2357111317192329....

where the sequence  of digits is formed  by the primes in ascending order, is
irrational.

The proof  of Theorem 138 is a little more difficult.  We give two
alternative proofs.

(1) Let us assume that any  arith,metical  progression of the form

k. loS+l+l (,k = 1, 2, 3 >...)

contains  primes. Then there are primes whose expressions in the decimal
system contain  an arbitrary number s of O’s, followed by a 1. Since
the decimal contains  such  sequences,  it does not terminate or recur.

(2) Let us assume that there is a prime between N and 10N  for every
N 3 1. Then, given s,  there are primes with just s digits. If the decimal
recurs, it is of the form

(9.4.1) *...  a,a,... ak[ala2...akl  . . . .

the bars indicating the period, and the first being placed where the
first period begins. We cari  choose 1 > 1 SO that a11  primes with s = kl
digits stand later in the decimal than the first bar. If p is the first such
-prime, then it must be of one  of the forms

p = a,a,...a,[a,a,...a,~...~a,a,...a,

or p = a,+,...ak~ala,...a~kl...~a,a,...a,ja,a,...a,

and is divisible by a, a2...ak or by a.,+,...a, a, a,...a,,;  a contradiction.

In our first proof  we assumed a special  case of Dirichlet ‘s  Theorem 15.

This special  case is easier to prove than the general theorem, but we
5591 1
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shall not prove it in this book, SO that (1) Will  remain incomplete. In
(2) we assumed a result which follows at once from Theorem 418 (which
we shall prove in Chapter XXII). The latter theorem asserts that, for
every N > 1, there is at least one  prime satisfying N < p < 2N.  It
follows, a fortiori, that N < p < 10N.

9.5. Tests for divisibility. In this and the next few sections we
shall be concerned for the most part with trivial but amusing puzzles.

There are not very many  useful tests for the divisibility of an integer
by particular integers such  as 2, 3, 5,...  . A number is divisible by 2 if
its last digit is even. More generally, it is divisible by 2y  if and only if
the number represented by its last v digits is divisible by 2”. The reason,
of course, is that 2~ 1 10”; and there are similar rules  for 5 and 5y.

Next 10” E 1 (mod9)

for every v, and therefore

A,. lOsfA,. 10s-l+...+AQ.  lO+A,+,  G A,+A,+...+A,+,  (mod9).

A fortiori this is true mod 3. Hence we obtain the well-known rule
‘a number is divisible by 9 (or by 3) if and only if the sum of its digits
is divisible by 9 (or by 3)‘.

There is a rather similar rule  for 11. Since  10 E -1 (mod 1 l), we
have 102’ E 1 > 102r+1  z -1 (mod ll),
SO that

A,. 108+A2. 108-1+...+A,.  lO+A,+i  E A,+,-A,+A,-,--...  (mod 11).

A number is divisible by 11 if and only if the difference  between the
sums of its digits of odd and even ranks is divisible by 11.

We know of only one  other rule  of any  practical use. This is a test
for divisibility by any  one  of 7, 11, or 13, and depends on the fact that
7.11.13 = 1001. Its working is best illustrated by an example: if
29310478561 is divisible by 7, 11 or 13, SO is

561-478+310-29  = 364=  4.7.13.

Hence the original number is divisible by 7 and by 13 but not by 11.

9.6. Decimals with the maximum period. We observe when
learning elementary arithmetic that

+ = -142857, 5 = -285714, . . . . ; = .$57142,

the digits in each  of the periods differing only by a cyclic permutation.
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Consider, more generally, the decimal for the reciprocal of a prime q.
The number of digits in the period is the order of 10 (modq), and is a
divisor of 4(q) = q- 1. If this order is q- 1, i.e. if 10 is a primitive root
of q, then the period has q- 1 digits, the maximum number possible.

We convert l/q  into a decimal by dividing successive powers of 10
by q; thus 10n

- l@%+fn+l>
q

in the notation of 9 9.1. The later stages of the process depend only
upon the value of fiz+r, and the process recurs  SO soon as f,,+l  repeats a
value. If, as here, the period contains  q- 1 digits, then the remainders

fa f3-V”>  f,
must a11  be different, and must be a permutation of the fractions

1 2 q-1- > - ,...>  - .
qq q

The last remainder f, is l/q.
The corresponding remainders when we convert plq into a decimal are

PfD  PfWY  Pfq,

reduced (mod 1). Thése  are, by TYheorem  58, the same  numbers in a
different order, and the sequence  of digits, after the occurrence of a
particular remainder s/q,  is the same  as it was after the occurrence of
s/q  before. Hence  the two decimals differ only by a cyclic permutation
of the period.

What happens with 7 Will  happen with any  q of which 10 is a primi-
tive root. Very little is known about these q, but the q below 50 which
satisfy the condition are

7, 17, 19, 23, 29, 47.

THEOREM 139. If q is a prime, and 10 is a primitive root of q, then the
decimals for

; ( p  =  1,2,...,q-1)

have periods of length q- 1 and differing  only  by cyclic permutation.

9.7. Bachet’s problem of the weights.  What is the least number
of weights which Will  weigh any  integral number of pounds up to 40
(a) when weights may  be put into one  pan only and (b) when weights
may  be put into either pan ?
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The  second problem is the more interesting. We cari  dispose of the
first by proving

THEOREM 140. Weights 1, 2, 4 ,..., 2+r  will  weigh any  integral weight
up to 2”-- 1; and no other set of SO few as n weights is equaily  effective (i.e.
will weigh SO long an unbroken sequence of weights from  1).

Any positive integer up to 2n-  1 inclusive cari  be expressed uniquely
as a binary decimal  of n figures, i.e. as a sum

n-1
2 a, 28,
0

where every a, is 0 or 1. Hence our weights Will  do what is wanted,
and ‘without waste’ (no two arrangements of them producing the same
result). Since  there is no waste, no other selection of weights cari  weigh
a longer sequence.

Finally, one  weight must be 1 (to weigh 1); one  must be 2 (to weigh
2); one  must be 4 (to weigh 4); and SO on. Hence 1, 2, 4,...,  2+r  is the
only system of weights which Will  do what is wanted.

It is to be observed that Bachet’s number 40, not being of the form
2”- 1, is not chosen appropriately for this problem. The weights 1, 2,

4, 8, 16, 32 Will  weigh up to 63, and no combination of 5 weights Will
weigh beyond 32. But the solution for 40 js not unique; the weights
1, 2, 4, 8, 9, 16 Will  also weigh any  weight up to 40.

Passing to the second problem, we prove

THEOREM  141. Weights 1, 3, 32,...,  3n-*  will weigh any  weight up to
‘$(3”-  l), when weights may  be placed  in either pan; ad no other set of SO
few as n weights is equally effective.

(1) Any positive integer up to 3n-1 inclusive cari  be expressed
uniquely by n digits in the ternary scale,  i.e. as a sum

n-1
0 a,3s,

where every a, is 0, 1, or 2. Subtracting

1+3+32+...+3”-1  = &3m-l),

we see that every positive or negative integer between -&(3fi-  1)  and
4(3%-  1) inclusive cari  be expressed uniquely in the form

n-1

; bs38T

where every b, is - 1, 0, or 1. Hence our weights, placed in either pan,
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Will  weigh any  weight between these  1imits.t  Since  there is no  waste,
no other combination of n weights cari  weigh a longer sequence.

(2) The proof  that no other combination will  weigh so long a sequence
is a little more troublesorne. It is plain, since  there must be no waste,
that the weights must a11 differ. We suppose that they are

Wl  < WC2  < . . . < w,.
The two largest weighable weights are plainly

w = w1+w2+...+w,, w, = wp+...+w,,.

Since  WI = W-l, wr  must be 1.
The next weighable weight is

-w1+w2+w3+...+wn  =  w-2 ,
and the next must be

wl+W3Sw~+...Swn*
Hence w1+w3+...+wn  = W-3 and w2  = 3.

Suppose now that we have proved that

w1  = 1, wp  = 3, . ..> w, = 38-i.

If we cari  prove that w,+~  = 38,  the conclusion Will  follow by induction.
The largest weighable weight W is

w = $ WL+  I: w,.
s+1

Leaving the weights wsfl,..., w,, undisturbed, and removing some of
the other weights, or transferring them to the other pan, we cari  weigh
every weight down to

- $ w~+s~lw~  = IV-(38-l),

but none  below. The next weight less than this is W-38, and this
must be wlSweS...fw,Sw,+2fw,~s~...~w~.

Hence W S+I  = qq+W2+...+W,)+l  = 38,

the conclusion required.
Bachet’s problem corresponds to the case n = 4.

9.8. The game of Nim. The game  of Nim is played as follows.
Any number of matches are arranged in heaps, the number of heaps,
and the number of matches in each  heap, being arbitrary. There are
two players, A and B. The first player A takes any  number of matches
from a heap; he may  take one  only, or any  number up to the whole

t Counting the weight to be weighed positive if it is placed  in one  pan and negative
if it is placed  in the other.
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of the heap, but he must touch  one  heap only. B then makes a move
conditioned similarly, and the players continue to take alternately. The
player who takes the last match wins the game.

The game has a precise  mathematical theory, and one  or other player
cari  always force a win.

We define  a winning position as a position such  that if one  player
P (A or B) cari  secure  it by his move, leaving his opponent Q (B or A)
to move next, then, whatever Q may  do, P cari  play SO as to win the
game. Any other position we cal1  a losing position.

For example, the position
. . . . ,

or (2,2),  is a winning position. If A leaves  this position to B, B must
take one  match from a heap or two. If B takes two, A takes the
remaining two. If B takes one, A takes one  from the other heap; and
in either case A wins. Similarly, as the reader Will  easily verify,

.I..l...  ,
or (1, 2, 3),  is a winning position.

We next defme  a correct position. We express the number of matches
in each  heap in the binary scale,  and form a figure F by writing them
down one  under the other. Thus (2,2),  (1,2,3), and (2,3,6,7)  give the
figures 10 01 010 ;

10 10 011
- 11 110
20 - 111

22 -
242

it is convenient to Write  01, OlO,...  for 1, lO,...  SO as to equalize the
number of figures in each  row. We then add up the columns, as indi-
cated in the figures. If the sum of each  column is even (as in the cases
shown) then the position is ‘correct ‘. An in.correct  position is one  which
is not correct: thus (1, 3, 4) is incorrect.

THEOREM 142. A position in Nim is a winning position if and  only  if
it is correct.

(1) Consider first the special  case in which no heap contains  more
than one  match. It is plain that the position is winning if the number
of matches left is even, and losing if it is odd; and that the same  candi-
tions define  correct and incorrect positions.

(2) Suppose that P has to take from a ,correct  position. He  must
replace one  number dcfining a row of F by a smaller  number. If we
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replace any  number, expressed in the binary scale,  by a smaller number,
we change the parity of at least one  of its digits. Hence when P take.s
from a correct position, he necessarily transforms it into an incorrect
position.

(3) If a position is incorrect, then the sum of at least one  column of
F is odd. Suppose, to fix our ideas, that the sums of the columns are

even, even, odd,  even, odd, even.

Then there is at least one  1 in the third column (the first with an odd
sum). Suppose (again  to fix our ideas) that one  row in which this
happens is

OlTlo*l,

the asterisks indicating that the numbers below them are in columns
whose sum is odd. We cari  replace this number by the smaller number

0181 TO,

in which the digits with an asterisk, and those only, are altered. Plainly
this change corresponds to a possible move, and makes the sum of every
column even; and the argument is general. Hence P, if presented with
an incorrect position, cari  always convert  it into a correct position.

(4) If A leaves a correct position, B is compelled to convert it into
an incorrect position, and A cari  then move SO as to restore a correct
position. This process Will  continue until every heap is exhausted or
contains  one  match only. The theorem is thus reduced to the special
case already proved.

The issue of the game is now clear. In general, the original position
Will  be incorrect, and the first player wins if he plays properly. But
he loses  if the original position happens to be correct and the second
player plays proper1y.t

t When playing  against an opponent  who does not know the theory of the gamc,
there is no need to play strictly according to rule. The experienced player cari  play. at
random  until he recognizes  a winning position of a comparatively  simple type. It is
quite enough to know that

1, 2n, 2n+l, n, 7-n, 7, 2, 3, 4, 5
are winning positions ; that 1,2n+l,  2n+2

is a losing position ; and that a combination of two winning positions is a winning position.
The winning move is not always unique. The position

1, 3, 9, 27

is incorrect, and the only move which makes it correct is to take 16 from the 27. The
position 3, 5, 7, 8, 11

is also incorrect, but may bc made correct by taking 2 from the 3, the 7, OP the Il.
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There is a variation in which the player who takes the last match
loses.  The theory is the same  SO long as a heap remains containing more
than one  match; thus (2,2) and (1,2,3)  are still  winning positions. We
leave it to the reader to think out for himself the small variations in
tactics  at the end of the game.

9.9. Integers with missing digits. There is a familiar paradoxt
concerning integers from whose expression in the decimal scale some
particular digit such  as 9 is missing. It might seem at first as if this
restriction should only exclude ‘about one-tenth’  of the integers, but
this is far from the truth.

THEOREM 143. Almost a11 numbersf contain  a 9, or any  given sequence
of digits such  as 937. More generally, almost a11 numbers, when expressed
in any  scale, contain  ewery  possible digit, or possible sequence of digits.

Suppose that the scale is r,  and that v is a number whose decimal
misses the digit b. The number of v for which r’-l < v < rl  is (r- l)l if
b := 0 and (Y- 2)(r-  l)l-’  if b # 0, and in any  case does not exceed
(r.-l)l.  Hence,  i f rk-l < n < rk,

the number N(n,)  of v up to n does not exceed

r-l+(r-1)2+...+(r-l)k  < k(r-l)k;

and

which tends to 0 when n + CO.
The statements about sequences  of digits need no additional proof,

sinae, for example, the sequence 937 in the scale of 10 may  be regarded
as a single digit in the scale of 1000.

The ‘paradox’ is usually stated in a slightly stronger form, viz.

THEOREM  144. The sum of the reciprocals  of the numbers which miss a given
digit is convergent.

The number of v between G-1  and rk is at most (r-  l)k. Hence

< c0  ( r - l ) ”c yk-l  = (T-  1) 2 (q-l = r(r-  1).
k=l k=l

We shall discuss next some analogous, but more interesting, properties

t Relevant in controversios  about  telephone directories.
$ In the sense of § 1.6.
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of infinite  decimals. We require a few elementary notions concerning
the measure of point-sets or sets of real numbers.

9.10. Sets of measure zero. A real number x defines  a ‘point’ of
the continuum. In what follows we use the words ‘number’ and ‘point’
indifferently, saying, for example, that ‘P is the point x’.

An aggregate of real numbers is called a set of points. Thus the set
T defined by

x = i (n = 1,2,3 ,...  ),

the set R of a11  rationals between 0 and 1 inclusive, and the set C of
a11  real numbers between 0 and 1 inclusive, are sets of points.

An interval  (z-6, x+6), where 6 is positive, is called a neighbourhood
of x. If S is a set of points, and every neighbourhood of x includes an
infinity of points of S, then x is called a limit point of S. The limit point
may  or may  not belong to S, but there are points of S as near to it
as we please. Thus T has one  limit point, x = 0, which does not belong
to T. Every x between 0 and 1 is a limit point of R.

The set S’ of limit points of S is called the derived set or derivative
of S. Thus C is the derivative of R. If S includes S’, i.e. if every limit
point of S belongs to S, then S is said to be closed. Thus C is closed.
If S’ includes S, i.e..if every point of S is a limit point of S, then S is
said to be dense in itself. If S and S’ are identical (SO that S is both
closed and dense in itself), then S is said to be Perfect. Thus C is Perfect.
A less trivial example Will  be found in $ 9.11.

A set S is said to be dense in an interval  (a, b) if every point of (a, b)
belongs to S’. Thus R is dense in (0,l).

If S cari  be included in a set J of intervals, finite  or infinite  in number,
whose total length is as small as we please, then S is said to be of measure
zero.  Thus T is of measure zero.  We include  the point l/n in the interval

of length 2-Q, and the sum of a11 these intervals (without allowance
for possible overlapping) is

6 2 2-n = 6,
1

which we may  suppose as small as we please.
Generally, any  enumerable set is of measure zero.  A set is enumerable

if its members cari  be correlated, as

(9.10.1) Xl>  X2,...’ X II’...>
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with the integers 1, 2 ,...,  n ,...  . We include x, in an interval  of length
2-“6,  and the conclusion follows as in the special  case of T.

A subset of an enumerable set is finite  or enumerable. The sum of
an enumerable set of enumerable sets is enumerable.

The rationals may  be arranged as

and SO in the form (9.10.1). Hence  R is enumerable, and therefore of
measure zero. A set of measure zero is sometimes called a nul1  set;
thus R is null. Nul1  sets are negligible for many  mathematical purposes,
particularly in the theory of integration.

The sum S of an enumerable infinity of nul1  sets&  (i.e. the set formed
by a11 the points which belong to some S,) is null. For we may  include
S, in a set of intervals of total length 2-%,  and SO S in a set of intervals
of total length not greater than 6 2 2-”  = 6.

Finally, we say  that almost a11 points of an interval  I possess a pro-
perty if the set of points which do not possess the property is null.
This sense of the phrase should be compared with the sense defined
in 5 1.6 and used in 5 9.9. It implies in either case that ‘most’ of the
numbers under consideration (the positive integers in $5  1.6 and 9.9, the
real numbers here) possess the property, and that other numbers are
‘exceptional’.t

9.11. Decimals with missing digits. The decimal

has four missing digits, viz. 0, 3, 6, 9. But it is easy to prove that
decimals which miss digits are exceptional.

We define  S as the set of points between 0 (inclusive) and 1 (exclusive)
whose decimals, in the scale of r,  miss the digit 6. This set may  be
generated as follows.

We divide (0,l) into r equal parts

a+1!<S<T
r (s 3 0, l,...,r-1);

the left-hand end point, but not the right-hand one, is included. The
sth part contains  just the numbers whose decimals begin with s-l,

t Our explanations here contain  the minimum necessary  for the understandiug  of
$5  9.11-13 and a few later  passages in the book. In particular, we have not given  any
general  definition of the meaaure  of a set. There are fuller accounts of a11 these ideas  in
the standard t r e a t i s e s  o n  anal,vsin.
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and if we remove the (b+  1)th  part, we reject the numbers whose first
digit is b.

We  next divide each  of the r-  1 remaining intervals into r equal parts
and remove the (b+l)th part of each  of them. We have then rejected
a11 numbers whose first or second digit is b. Repeating the process
indefinitely, we reject a11 numbers in which any  digit is b; and S is the
set which remains.

In the first stage of the construction we remove one  interval  of length
I/r; in the second, r-l intervals of length l/r2,  i.e. of total length
(r- 1)/r2;  in the third, (T- 1)2  intervals of total length (T- 1)2/r3; and
SO on. What remains after k stages is a set Jk of intervals whose total
length is

l-
k,  (r-l)‘-1
2 yl’
Z=l

and this set includes S for every k. Since

l-
k (r-l)l-1
c

--+l-{#-cg)]=0
r’

Z=l

when k + oc), the total length of Jk is small when k is large; and S is
therefore null.

t
THEOREM 145. The set of points whose decimals, in any  scale, miss

any  digit is nu&  almost a11 decimals contain  a11 possible digits.

The result may  be extended to caver combinations of digits. If the
sequence  937 never occurs in the ordinary decimal for x, then the digit
‘937’ never occurs in the decimal in the scale of 1000. Hence

I
THEOREM 146. Almost a11 decimals, in any  scale, contain  a11 possible

sequences  of any  number of digits.

Returning to Theorem 145, suppose that r = 3 and b = 1. The set
S is formed by rejecting the middle third (4,s)  of (0, l), then the middle
thirds (t,  g),  (&,  1)  of (0, $) and ($, l), and SO on. The set which remains
is null.

It is immaterial for this conclusion whether we reject or retain the
end points of rejected intervals, since  their aggregate is enumerable and
therefore null. In fact our  definition rejects  some, such  as 4 = ‘1, and
includes others, such  as 6 = *2.

The set becomes more interesting if we retain a11 end points. In this
case (if we wish to preserve the arithmetical definition) we must a,llow
ternary decimals cnding in 2 (and excluded in our  account of decimals
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at the beginning of the chapter). Al1 fractions p/P have then two
representations,  such  as

3 = .l = .oB

(and it was for this reason that we made the restriction); and an end
point of a rejected interval  has always one  without a 1.

The set S thus defined is called Cantor’s ternury set.
Suppose that x is any  point of (0, l), except 0 or 1. If x does not

belong to S, it lies inside a rejected interval, and has neighbourhoods
free from points of S, SO that it does not belong to S’. If x does belong
to S, then a11 its neighbourhoods contain  other points of S; for other-
wise there would be one  containing x only, and two rejected intervals
would abut.  Hence  x belongs to S’. Thus S and S’ are identical, and
x is Perfect.

THEOREM 147. Cantor’s ternury set is a Perfect  set of measure zero.

9.12. Normal numbers. The theorems proved in the last section
express much  less than the full truth. Actually it is true, for example,
not only that almost a11 decimals contain  a 9, but that, in almost a11
decimals, 9 occurs with the proper frequency, that is to say  in about
one-tenth of the possible places.

Suppose that x is expressed in the scale of r,  and that the digit b occurs
n,,  times in the first n places. If

when n -+  CO,  then we say  that b has frequency /3.  It is naturally not
necessary that such  a limit should exist; n,/n may  oscillate, and one
might expect that usually it would. The theorems which follow prove
that,  contrary to our expectation, there is usually a definite  frequency.
The existence of the limit is in a sense the ordinary event.

We say  that x is simply normal in the scale of r if

?2,1
n r

for each  of the r possible values of b. Thus
x = -0123456789

is simply normal in the scale of 10. The same  x may  be expressed in the
scale of lOio,  when its expression is

x = -6,
where b = 123456789. It is plain that in this scale x is not simply
normal, 10l”- 1 digits being missing.
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This remark leads  us to a more exacting definition. We say  that x is
normal in the scale of r if a11 of the numbers

x, TX,  rzx,...t

are simply normal in a11 of the scales

r,  r2,  r3 ,...  .

It follows at once that, when x is expressed in the scale of r,  every
combination b, b,... b,

of digits occurs with the proper frequency; i.e.  that, if nb is the number
of occurrences of this  sequence  in the first n digits of x, then

(9.12.2)
1no,-

n rk

when n + 00.
Our main theorem, which includes  and goes beyond those of $9.11, is

1 THEOREM 148. Almost a11 numbers are normal in any  scale.

9.13. Proof that almost a11  numbers are normal. It is sufficient
to prove that almost a11 numbers are simply normal in a given scale.
For suppose that this has been proved, and that X(x,r) is the set of
numbers x which are not simply normal in the scale of r.  Then 8(x, r),
X(x,r2),  S(z,r3),... are null, and therefore their sum is null. Hencethe
set T(x,  r)  of numbers which are not simply normal in a11 the scales
r,  r2,... is null.  The set T(rx,r) of numbers such  that rx  is not simply
normal in a11 these scales is also null; and SO are T(rzx,r), T(?x,r),...  .
Hence again  the sum of these sets, i.e. the set V(x, r)  of numbers which
are not normal in t,he  scale of r,  is null. Finally, the sum of U(x,  2),
V(x, 3),... is null; and this proves the theorem.

We have therefore only to prove that (9.12.1) is true for almost a11
numbers x. We may  suppose that n tends to infinity through multiples
of r,  since  (9.12.1) is true generally if it is true for n SO restricted.

The numbers of r-ary decimals of n figures, with just m b’s in assigned
places, is (r- l)n-m. Hence the number of such  decimals which contain
just mb’s, in one  place or another, is$

phm)  = ,,,!<~~,~  (r-lP-m.

t Strictly, the fractional  parts of theso numhers (sinco we havo been considering
numhers hetween 0 ad 1). A numher greater  than 1 is simply normal, or normal, if
its fractional  part is simply normal, or normal.

: p(n, m) is the term in (T- l)n-m  in the binomial expansion of

{1+(-l)}“.
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We consider any  decimal,  and the incidence of b’s among its first n
digits, and cal1

p = m-E = m-n*
r

the n-excess of b (the excess of the actual  number of b’s over the number
to be expected). Since n is a multiple of r,  n* and tu  are integers. Also

(9.13.1)

We bave

1- - < - <  1-Y
r n r

(9.132) p(n,m+l) n - m (r- I)n-rp
pin, m)- - (r- l)(m+ 1) - (r- l)n+r(r-  l)(p+ 1)’

Hence

phm+l)
ph m)

> 1 (j.L = -1, -Z,...), P~i~~)l)  < 1 (CL = O,l, a,...);
>

SO that p(n, m) is greatest when

p = 0,
If p > 0, then, by (9.13.2),

(9.13.3) p(n,m+l) (r- I)n-rp
phm)  = (r-l)n+r(r-l)(p+l)

m = n*.

< 1-A: < exp(-3:).

If tu  < 0 and Y = I~L],  then

(9.13.4) phm-1) (r- 1)m (r- I)n-r(r-  1)v_ -.-  =
An,  m) n-m+1 (r-l)n+r(v+l)

We now fix  a positive 6,  ad consider the decimals for which

(9.13.5) IPI  2 hz!
for a given n. Since n is to be large, we may.  suppose that 1~~1  > 2.
If p is positive then, by (9.13.3),

p(n,  m) Phm)  p(n,m-1)  p(n,m-p+l)
phm-p) = p(n, m- 1) p(n, m-2) “* p(n,  m7p)

< e x p  - -
l

r (P-l)+(~-2)+...+1
r - l n 1

= exp
G- 1)~

- 2(r-  1)n
< e-Kp’ln
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where K is a positive number which depends only on r.  Since

1 2 7

it follows that
ph m-p)  = ph n*>  < rn,t

(9.13.6) p(n, m) < me-K+.
Similarly it follows from (9.13.4) that (9.13.6) is true also for negative CL.

I-et L’Y~(~)  be the set of numbers whose n-excess is tu.  There are
I, = p(n, m) numbers ti, f2 ,..., tr,  represented by terminating decimals
of n figures and excess t.~,  and the numbers of SrL(~)  are included in the
intervals

6% t*+r+  (8 = 1,  %...,P).
Hence  A!&(P)  is included in a set of intervals whose total length does not
exceed r-np(n,  m) < e-K@1n.

And if T,(6) is the set of numbers whose n-excess satisfies (9.13.5),
then T,(6)  cari  be included in a set of intervals whose length does not
exceed Kpa’n = 2 2 e-KPln < 2 1 e-tKp2he-iKph < 2e-tK6+z

p>sn p>sn

= 2e-4Ks2n

1 -e-&K,n < Lne-tKsa”,

where L, like K, depends only on r.
We now fix N (a multiple N*r  of r), and consider the set U,(6) of

numbers such  that (9.13.5) is true for some
n  =  n*r  > N  =  N*r.

Then U,(6)  is the sum of the sets

TN@)>  TN+A%  TN+w(%.>
i.e. the sets T,(6)  for which n = kr  and k > N*.  It cari  therefore be
included in a set of intervals whose length does not exceed

L 2 kre-@“b  = q(N*);
k=N’

and q(N*)  -+  0 when n* and N* tend to infinity.
If U(S) is the set of numbers whose n-excess satisfies (9.13.5) for an

@finity  of n (all multiples of r), then U(S) is included in U,(6)  for
every N, and cari  therefore be included in a set of intervals whose total
length is as small as we please. That is to say,  U(6) is null.

Finally, if z is not simply normal, (9.12.1) is false (even when n is
restricted to be a multiple of r), and

IPI  2 5n
t Indeed p(n,  m) < r”  for ell  m.
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for some positive 5 and an infinity  of multiples n of r.  This 5 is greater
than some one  of the sequence  6,  $3, @,..., and SO x belongs to some one
of the sets

a811  of which are null. Hence  the set of a11 such  x is null.
It might be supposed that, since almost a11 numbers are normal, it

would be easy to construct  examples of normal numbers. There are in
fact simple constructions; thus the number

-123456789101112...,

formed by writing down a11 the positive integers in order, in decimal
notation, is normal. But the proof  that this is SO is more troubles-
than might be expected.

NOTES ON CHAPTER IX
§ 9.4. For Theorem 138 see Polya and Szego,  ii. 160, 383. The result is stated

without proof  in W. H. and G. C. Young’s The theory of sets of points, 3.
§ 9.5. See Dickson, History, i, ch. xii. The test for 7, 11, and 13 is not mentioned

explicitly. It is explained by Grunert, Archiv  der Math. und Phys. 42 (1864),
478-82. Grunert gives slightly earlier rcferences to Brilka an&  V. A. Lebesgue.

# 9.7-8. See Ahrens, ch. iii.
There is an interosting logical point involved in the definition of a ‘losing’

position in Nim. We define  a losing position as one  which is not a winning position,
i.e. as a position such that P cannot force a win by lcaving it to Q. It follows
from our analysis of the game that a losing position in this sense is also a losing
position in the sense that Q cari  force a win if P leaves such a position to Q. This
is a case of a general theorem (due to Zermelo and von Neumann) true of any
game in which there are only two possible results and only a finite choice of
‘moves’ at any stage. See D. Konig,  Acta  Univ. Hungaricae (Szeged), 3 (1927),
121-30.

$ 9.10. Our ‘limit point’ is the ‘limiting point’ of Hobson’s Theory offunctions
of a real variable or the ‘Haufungspunkt  of Hausdorff’s Mengenlehre.

a§  9.12-13. NivenandZuckerman(Pac$cJournaZofMath.  1(1951),  103%9)and
Cassels  (ibid. 2 (1952), 555-7) give proofs that, if (9.12.2) holds for every  sequencc
of digits, then z is normal. This is the converse of our statement that (9.12.2)
follows from the definition; the proof  of this  converse is not trivial.

For the substance of these sections see Borel, Lepons  sur la  théorie des fonctions
(2nd ed., 1914),  182-216. Theorem 148 has been developed in various ways since
it was originally provcd by Bore1 in 1909. Full references  Will  be found in
Koksma, 11618.

Champernowne (Journal London Math. Soc. 8 (1933), 254-60) proved that
.123...  is normal. Copelancl  and ErdBs (Bulletin Amer. Math. Soc. 52 (1946),
857-60) provcd that, if a,, a2,... is any increasifig  sequenco of integers such that
a, < n’+’ for every  E  > 0 and n >,  ~L~(E),  then tho decimal

Tl,U,fJ,...
(formed by writing ont the  digit,s  of thc  un in any  scale in ordcr) is normal in
that scale.
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CONTINUED FRACTIONS

10.1. Finite continued fractions. We shall describe  the function

(10.1.1) aof
1

a,+
1

a2+
1

as+...

+;
of the N+ 1 variables

aO, al,...j  an,-.p  aNj

as a jinite  continued fraction, or, when there is no risk of ambiguity,
simply as a continued fraction. Continued fractions are important in
many  branches of mathematics, and particularly in the theory of ap-
proximation to real numbers by rationals. There are more general types
of continued fractions in which the ‘numerators’ are not a11 l’s, but we
shall not require them here.

The formula (10.1.1) is cumbrous, and we shall usually Write  the
continued fraction in one  of the two forms

1 1 1
ao+- -a,+ a,+  “’  TN

or [a,,  a,,  a2,..., aNl*

We cal1 a,, a,,..., aN  the partial quotients, or simply the quotients, of the
continued fraction.

We find by calculation thatt

[a,] = T, [a,,a,]  = y, [a,,  a,,  a21 =
a2 a,  ao+a2+ao

a,a,+l
;

and it is plain that

(10.1.2) [a,,a,l  = ao_tL,
a1

(l0.1.3) [a,,a,  ,...,  a,-,,a,]  =
[
a,,a,  ,...,  a,,-,,a,,-,+~ 9n 1

t There is a clash  between our notation hem and that of § 6.11, which we shall use
again later  in the chapter  (for example in 8 10.5). In § 6.11, [CC]  was defined as the integral
part of z; while here [a,,] means simply a,. The ambiguity should not confuse the
reader, since  we use [q,]  here merely as a special  case of [ao,  a,,..., an].  The square bracket
in this sense Will  seldom occur with a single letter inside it, and Will  not then be im-
portant.

5591 K
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for 1 < n < N. We could define  oui continued fraction by (10.12)
and either (10.1.3)  or (10.1.4). More generally

(10.1.5) [a,,a,  >...>  a,] = [U,,~,,...,U,-l~[~,,~,,,,...~~,ll

for 1 < m < n < N.

10.2. Convergents to a continued fraction. We cal1

[~o,~,,..., a,] (0 < n < NI

the nth convergent to [a,,~, ,...,  qv]. It is easy to calculate the con-
vergents by means  of the following theorem.

THEOREM 149. Ij prr  und  qn  are dejined  by

(10.2.1) p, = a,, P, = alao+  1, P, = a, P,-,+P~-~  (2 < n < N),

(10.2.2) q. = 1, q1 = a,, qn  = a,q,-,+q,-, (2 < n < NI,
then

(10.2.3) C 0, a,,..., a,] = -.
qn

We have already verified the theorem for n = 0 and n = 1. Let us
suppose it to be true for n < m, where m < N. Then

[ a,, a, ,...>  a,-,,  a,] = pf = %n P?n-lSP,-2
m U?n  Q?n-lS%n-2  '

and  P,,-~,  P~-~,  qm+,  qm-2  depend  only on
a,,  a,,..., a,-,.

Hence,  using (10.1.3),  we obtain

[ ao,  a,,...,  a,-,,  a,, a,+, 1 = p,,u, >...>  a,-,,a,+&]?7l+1
= (Um++-)Pm-l+Pn2

(%+&-)%-l+qm-2

~m+l(~m~m-l+~,-2)+il)~~-lZZZ
a,+,(a,q,-l+q,-,)+q,-l

= %n+,Pm+P,-lPm+1.
%n+1!7rn+!&n-1

-->
Pm+1

and the theorem is proved by induction.
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It follows from (10.2.1)  and (10.2.2) that

1 3 1

(10.2.4)

Also

& _ anpn-I-kPn-a
qn - an qn-l f qn-2

./

P, qn-l-pn-l  qn  = (anpn-l+pn~2)qn-l-lîn-l(an  qn-1+4n-z)
= - (Pn-1  qn-‘2-Pn-2 a,-1).

Repeating the argument with n-l, n-2,..., 2 in place of n, we obtain

Pînqn-1-Pn-1Pn  =  (-1)12-1(PlqO-POql)  =  (-1F.
Also

pn kln-2-Pn-2  qn  = (anpn-l+iDn-z)qn-2-pn-2(an  qn-1+qn-2)
= an(pn-l chd-h qn-J = (- l)%.

THEOREM 150. The functions p, and qn  satisfy
(10.2.5) PnPn-1-Pn-1qn  = (-l)“-1
OY

(10.24 Pn pn-1 (-1)*-l--~ ZZZ----.
qn  q n - 1 qn-1 qn

THEOREM 151. They also satisfy
(10.2.7) P,cL-2-P,-2%  = (-l)“%
or
(10.2.8) & Pn-2 C-l)%

qn  qn-2-= CLdi

10.3. Continued fractions with positive quotients. We now
assign numerical values to the quotients a,, and SO to the fraction
(10.1.1) and to its convergents. We shall always suppose that
(10.3.1) a1  > 0, . . . . aN > o,t
and usually also that a, is integral,  in which case the continued fraction
is said to be simple. But it is convenient first to prove three theorems
(Theorems 152-4 below) which hold for a11 continued fractions in which
the quotients satisfy (10.3.1). We Write

PVlx,=-,
qn

x = x,,

SO that the value of the continued fraction is xN  or x.
It follows from (10.1.5) that

(10.3.2) x = [ao?  alJ-.,  aN] = [aoj  alj-.,  an-l,  [any  an+l,...p  aN]]

[a,, a,,,,..., aNh-1  fpn-2EL=
[ an?  an+l~~~~3  aN]qn-1i%-2

for 2 < n < N.
t a,,  may  be negative.
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THEOREM 152. The even  convergents xzn increase strictly with n, while
the odd convergents xZn+l  decrease strictly.

THEOREM 153. Every odd convergent is greater than any  even convergent.

THEOREM 154. The value of the continued fraction is greater than that
of any  of its even convergents and less  than that of any  of its odd convergents
(except  that it is equal to the last convergent, whether this be even or odd).

In the first place every qn.  is positive, SO that, after (10.2.8) and
(10.3.1),  x,-x,-2 has the sign of (-l)ll. This proves Theorem 152.

Next, after (10.2.6),  X,-X,-~  has the sign of (-l)“-l,  SO that

(10.3.3) %rnil  > x2m.

If Theorem 153 were false, we should have x2m+l  < xzP  for some pair
m, p. If tu  < m, then, after Theorem 152, x2m+l  < xZm,  and if tu  > m,
then x2p+1  < x2p; and either inequality contradicts (10.3.3).

Finally, x = xN  is the greatest of the-even, or the least of ‘the  odd
convergents, and Theorem 154 is true in either case.

10.4. Simple continued fractions. We now suppose that the a,
are integral and the fraction simple. The rest of the chapter Will  be con-
cerned  with the special  properties of simple continued fractions, and
other fractions Will  occur only incidentally. It is plain that p, and qn
are integers, and qlL  positive. If

C a,,  a,,  a2,...,

we say  that the number x (which is necessarily rational) is represented
by the continued fraction. We shall see in a moment that, with one
reservation, the representation is unique.

THEOREM 155. qn  3 qnP1  for n 3 1, with inequality when n > 1.

THEOREM 156. qn  > n, with inequality when n > 3.

In the first place, q. = 1, q1 = a1  3 1. If n > 2, then

qn  = anqn-1+qn-2 3 qn-1+1y
SO that qn  > qnel  and qn  > n. If n > 3, then

and SO qn  > n.
qn  3 qn-1+9n-2  > qn-,+1  3 n,

A more important property of the convergents is
THEOREM 157. The convergents to a simple continued fraction are in

their lowest terms.
For, by Theorem 150,

dlp, . djq, + d/(-l)“-l  -+ dl  1.
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10.5. The representation of an irreducible  rational fraction
by a simple continued fraction. Any simple continued fraction

[ a,, a,, . . .,  aN]  represents a rational number

x = XN.
In this and the next section we prove that, conversely, every positive
rational x is representable by a simple continued fraction, and that,
apart  from one  ambiguity, the representation is unique.

THEOREM  158. If x is representable by a simple continued fraction with
an odd (even) nurnber  of convergents, it is also representable by one  with
an even (odd) number.

For, if a, > 2,

Ca,,a,,..., a,] = [a,,a,,...,a,-1,  11,
while, if a, = 1,

[ao, a,,..., a,-,,  11  = [a,,  a,,..., an-2,  a,-,+ 11.
For example [2,2,3]  = [2,2,2,1-J
This choice  of alternative representations is often useful.

We  cal1 ai = a,, a,,,,...,. [ aNI (0 < n < N)
the n-th complete  quotient of the continued fraction

[ao, a,,...,  a,,..., aNI.

Thus 4 ao+ 1x = a;, x=7
a1

and

(10.5.1) x - ahn-l+pn-2 (2 < n < N).
4 qn-1+qn-2

THEOREM 159. a, = [a:],  the integral  part of a;,7 except that

UN-1  = [a&-,]-  1
when aN  = 1.

If N = 0, then a, = aO  = [ah].  If N > 0, then

a; = an+-& (0 < n < N-l).

Now a , , , )  1  (O<n<N-1),

except that a;,,  == 1 when n = N- 1 and aN  = 1. Hence

(10.52) a, < a; < a,+1 (0 < n < N-1)
and an  = [a:] (0 < n < N-1)

t We revert  hem to our  habitua1 use of the square bracket  in accordance with the
definition of f 6.11.
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except  in the case specified. And in any  case
UN  = u&  = [u&].

THEOREM 160. If two simple continued fractions

[~,,~l,...,~,J [b,,  bl,...,  bjlf]

have the sume  value x, und  a, > 1, bAf  > 1, then M = N und  the fractions
are identicul.

When we say  that two continued fractions are identical we mean  that
they are formed by the same  sequence  of partial quotients.

By Theorem 159, a, = [x] = 6,. Let us suppose that the first n
partial quotients in the continued fractions are identical, and that
a;, 6; are the nth complete quotients. Then

x = [ao, a,,..., a,-,,  a;] = [a,, a,,..., a,-,,  GI.

If n = 1, then

u;  = b;, and therefore, by Theorem 159, a, = b,. If n > 1, then, by
(10.5.1),

4p,-l+io,-2 _ bhn-l+p,-2
4 qn-l+qn-2  - bL qn-l+qn-2  ’

(a~-b~)(p,-,q,-,-p,-zqn-1)  = 0.
But pn-lqn-2-plL-2qn-1  = (-l)*,  by Theorem 150, and SO a; = bk. It
follows from Theorem 159 that a, = 6,.

Suppose now, for example, that N < M. Then our argument shows
that a, = b,
for n < N. If M > N, then

&f = [a,, a, ,...,  a,]  = [ao,  a, ,...,  aN,  bN+l,...,  bJ = “+lpN+pN-l
QN biV+l  qN +QN-1  ’

by (10.5.1); or PN qN-l-PN-1  qN = ‘3
which is false. Hence  M = N and the fractions are identical.

10.6. The continued fraction algorithm and Euclid’s algo-
rithm. Let x be any  real number, and let a, = [x]. Then

x.=  ao+to, O<&<  1.
If f. # 0, we cari  write

i = a;, [a;]  = a,, 4 = a,+t,, O<c$,<  1.

If c1 # 0, we cari  write
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ad so on. Also a; = 1/[,-1  > 1, ad SO a, > 1, for n > 1. Thus

5 = [a,,aJ = a a +J = [a,,a,,aJ  = [a,,a,,a,,  41 = . . . .
[ O'  ' aJ

where a,, a,,... are integers and

a1  > 0, a2  > O,... .

The system of equations

x = ao+<,

;= a2  = a,+[, (0 6 12 < 1)s

is known as the continued fraction algorithm. The algorithm continues
SO long as (, # 0. If we eventually reach  a value of n, say  N, for which
cN  = 0, the algorithm terminates and

x = [a,,  a,,  a2,...,  4.
In this case x is represented by a simple continued fraction, ad is
rational. The numbers a; are the complete quotients of the continued
fraction.

THEOREM 161. Any  rational  number cari  be represented by a Jinite
simple continued fraction.

If x is an integer, then f. = 0 ad x = a,. If x is not integral, then
hx = ->
k

where h ad k are integers ad k > 1. Since

h
- = ao+So,k h = aok+50k,

a, is the quotient, ad k, = CO k the remaincler,  when h is divided by k.t

If t.  # 0, then

t The ‘remainder’, hem and in.whet  follows, is to be non-negative (here positive).
If a, > 0, thon  z and h are positive and kl is the remeinder in the ordinary sense of
arithmetic. If a, < 0, then z and h are negative and the ‘remainder’ is

(x-[xl%
Thusifh  = -7, k = 5, the ‘remeinder’ is

(-g--[--p])5  = (-;+3)5 = 3.
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and k
- = a,+e1,
kl

k = alkl+flkl;

thus a, is the quotient, and k, = f1 k, the remainder, when k is divided
by k,. We thus obtain a series  of equations

h = a,k+k,, k = a,k,+k,, k, = a,k,+k,, . .  .
continuing  SO long as f,,  # 0, or, what is the same  thing, SO long as
k11+1 # 0.

The non-negative integers k, k,,  k,, . . .form a strictly decreasing sequence,
and SO kN+l  = 0 for some N. It follows that f,v = 0 for some N, and that
the continued fraction algorithm terminates. This proves Theoreml61.

The system of equations
h = a,k+k, (0 -=c k, < k),
k = a,k,+k, (0 -=c k, < k,),

X,-z  = ‘“iv-1  ;N-i-tk, (i < Ic,  < FyN-l),

b-1 = aNkN
is known as Euclid’s algorithm. The reader Will  recognize the process
as that adopted in elementary arithmetic to determine the greatest
common divisor k, of h and k.

Since  fN = 0, ak = a,; also

and SO aN  3 2. Hence  the algorithm determines a representation of
the type which was shown to be unique in Theorem 160. We may  always
make the variation of Theorem 158.

Summing up our results we obtain

THEOREM 162. A ration&  number cari  be expressed as a Jinite  simple
continued fraction in just two ways, one  with an even and the other with
an odd number of convergents. In one  form  the .last  partial quotient is 1,
in the other it is greater than 1.

10.7. The difference  between the fraction and its convergents.
Throughout this section we suppose that N > 1 and n > 0. By (10.5.1)

I
x= an+lPn+pn-l,

a~+1!7n+cL-1
for 1 < n < N-l, and SO

x-&  = _ P,q,-,--P,L-,q,  _ c--l)*
qn s&n+1 PnSPn-1)  - P,(4&+1  %S!I*-1)  -
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Also Po 1x--ZZZ  x-a, = y.
Po a1

If we write
(10.7.1) 4; = 4, d = akq,-,+q,-,
(SO that, in particular, q& = qAv),  we obtain

THEOREM 163. 1fl <n <N--l,  then

x2L(-1)1L.
qn QnPn+1

(1 <n<N)

This formula gives another proof  of Theorem 154.

Next, un+,  < a;,1 < a,+l+l
for n < N-2, by (10.5.2),  except that

uhel  = aLvel+  1

when uN  = 1. Hence, if we ignore this exceptional case for the moment,
we have
(10.7.2) q1 = a, < 4 -c  a,+1 G q2
and

(10.7.3) qn,,  '='4t+lqn+!Ll > %+lq,+Ll = qn+19

(10.7.4) qi+1  <  a“,+lPn+!ln-l+!ln = P,,+1SP,  < %+2qn+1fq,  = qn+29
for 1 < n < N-2: It follows that

(10.7.5)

while

$- < IPn-QnXI  < -& (n  G N-21,
n+2

(10.7.6) IPN-,-q,-$1  = ‘,
qN

PN-qNx  = O*

In the exceptional case, (10.7.4) must be replaced by

h-1  = (“N-1+1kN-2+qN-3  = qN-l+qN-2 = qN

ad the first inequality in (10.7.5) by an equality. In any  case (10.7.5)
shows that Ipn-q,fixl  decreases steadily as n increases; a fortiori, since
qn increases steadily,

I I
*-A

qn
decreases steadily.

We may  sum up the most important of our  conclusions in

THEOREM 164. If N > 1, n > 0, then the differences

X-B!,
‘In

q,rx-PT,
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decrease steadily in absolute  value as n increases.  Also

where
and

qnx-pn = y,

0 < 6, < 1 (1 < n < N-2), s,-, = 1,

[Chap. X

(10.7.7)

for n < N- 1, with inequality in both places  except  when n = N-l.

10.8. Infinite  simple continued fractions. We have considered
SO far only finite  continued fractions; and these, when they are simple,
represent rational numbers. The chief interest  of continued fractions,
however, lies in their application to the representation of irrationals,
and for this in.nite  continued fractions are needed.

Suppose that a,,, a,, aa,... is a sequence of integers satisfying (10.3. l),
SO that

5, = [ao,  q,...,  a,1
is, for every n, a simple continued fraction representing a rational
number x,. If, as we shall prove in a moment, x, tends to a limit x
when n -+  00,  then it is natural to say  that the simple continued fraction

(10.8.1) [a,,  a,,  a2,... 1
converges to the value x, and to write

(10.8.2) x = [a,,a,,a,  ,...  1.

THEOREM 165. If a,, a,, a2 ,... is a sequence of integers satisfying
(10.X1), then x,  = [a,,a,  ,..., a,] tends to a Emit  x when n + CQ.

We may  express this more shortly as

THEOR.EM 166. Al1  infinite simple continued fractions are convergent.

We write PT&xa  = - =
cl [

a,,a,  ,...,  arr],
n

as in $ 10.3, and cal1 these fractions the convergents to (10.8.1). We
have to show that the convergents tend to alimit.

If N > n, the convergent x, is also a convergent to [a,, a,,..., aN].
Hence, by Theorem 152, the even convergents form an increasing and
the odd convergents a decreasing  sequence.

Every even convergent is less than x1,  by Theorem 153, SO that the
increasing sequence of even convergents is bounded above; and every
odd convergent is greater than x0, SO that the decreasing sequence of
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odd convergents is bounded  below. Hence the even convergents tend
to a limit tl, ad the odd convergents to a limit ES,  ad .$,  < 5,.

Finally, by Theorems 150 ad 156,

/?-El  = & G &l)+O’

SO that f1 = 5, = x, say,  ad the fraction (10.8.1)  converges to x.
Incidentally we see that

- THEOREM 167. An in&nite  simple continued fraction is le.ss  than any
of its odd convergents and greater than any  of its even convergents.

Here, and often in what follows, we’use ‘the continued fraction’ as
an abbreviation for ‘the value of the continued fraction’.

10.9. The representation of an irrational number by an infinite
continued fraction. We cal1

4 = [a,,a,+,,...]
the n-th complete  quotient of the continued fraction

2 = [a,,a,,...].

a; = lim [a,, a,+,,..., aN]
N-+X

- a,+ lim 1- = a,+&,
N-tm [%+l,.-,  UN] %a+1

and in particular x = aO  = a,+-&.
a1

Also 4 > a,, ak+1  > a,+, > 0, O<&<  1;

and SO  a, = [a;].
A THEOREM 168. If [a,,, a,,~, ,...  ] = x,  then

ao = [xl, un  = [a;] (n > 0).
From this we deduce, as in 0 10.5,

- THEOREM 169. Two in$nite  simple continued fractions which have the
same  value are identical.

We now return to the continued fraction algorithm of 8 10.6. If x
is irrational the process cannot terminate. Hence it defines  an infinite
sequence  of integers ao,al, a2,...,
ancl  as before

x = [a,,  41 = [a,,  a,,  41 = . . . = [a,,  a,,  +..,  a,,  ak+l],

where
1

an+,  = a,+, +-i- > a,+,.
an+2
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Hence x= a?&+,  P,+Pn-l
aA+ qn+%&-1  ’

by (10.5.1),  and  SO

x-?l  = P,,-,q,-P?!,q,-l  = C-1)”
qn Pn(4%+1  QnSPn-1) Pn(a~+l4n+%d

[Chap. X

1
l < l--\-

< qn(an+lq,+qn-l)  - qn4n+l n(n+l)
+O

when n -f CO.  Thus
Px = lim 2 = [a,, a, ,...,  a, ,...  1,

?2-t*  qn
and the algorithm leads to the continued fraction whose value is x, and
which is unique by Theorem 169.

THEOREM 170. Every irrational number cari  be expressed in just one
way as an in$nite  simple continued fraction.

Incidentally we see that the value of an infinite  simple continued
fraction is necessarily irrational, since  the algorithm would terminate
if x were rational.

We define qn  = 4 qn-l+qn-2
as in 5 10.7. Repeating the argument of that section, we obtain

THEOREM 171. The results  of Theorems 163 and 164 hold  also (except
for the references  to N) for in$nite  continued fractions. In particular

(10.9.1) / 1 1x-p&? <-
qn  qnqn+1

<$.
n

10.10. A lemma. We shall need the theorem which follows in
5 10.11.

THEOREM 172. If

where 5 > 1 and P, Q, R, and X are integers such that

Q>X>O, P S - Q R  =  Al,

then RIS and Pi& are two consecutive  convergents to the simple continued
fraction whose value is x. If R/AS’  is the (n- 1)th convergent, and Pi& the
n-th, fhen 5 is the (n+l)th  complete  quotient.

We  cari  develop P/Q  in a simple continued fraction

(10.10.1) g = [a,, a, ,...,  arL]  = f.
n
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After Theorem 158, we may  suppose n odd or even as we please. We
shall choose n SO that

(10.10.2) PS-QR = fl = (-l)“-l.

Now (P,  Q) = 1 and Q > 0, and pn and qn  satisfy the same  condi-
tions. Hence (10.10.1) and (10.10.2) imply Y = pn,  Q = qn,  and

pn S-q, R = PS-QR = (-1)%-l = pnqn-l-pn-Iqn,
or <
(10.10.3) p,(S-qn-1)  = q,(R-pn-1).
Since  (p,,q,)  = 1, (10.10.3) implies

(10.10.4) qn  I (S-CL-l)*
But q,=Q>S>O, qn  a Qn-1 > 0,
and SO I s-qn-1  I < qn,
and this is inconsistent with (10.10.4) unless S-q,-,  = 0. Hence

s = qn-l, R =,P~-~

and x = Pr& 5-+-P,-,
qn  5+4n-1

or x = [a,,a,,...,  a,, 51.
If we develop 5 as a simple continued fraction, we obtain

5 = [%+1,  %+w..l
where a,,,  = [Z;]  3 1. Hence

x = [a,,  a,,...,  a,,  a,,,,  %&+2>...1>
a simple continued fraction. But pn-llqn-l  and p,/q,, that is RIS and
Pi&,  are consecutive  convergents of this continued fraction, and 5 is
its (n+  1)th  complete quotient.

10.11. Equivalent numbers. If c and 71  are two numbers such  that

uv+bt=-,
C71Sd

where a, b, c,  d are integers such  that ad - bc = f 1, then .$  is said to
be equivulent to 7. In particular, .$  is equivalent to itse1f.t

If 5 is equivalent to 7, then

-dt+bTE--,
g-u

(-d)(-a)-bc = ad-bc = fl,

and SO 7 is equivalent to 5.  Thus the relation of equivalence  is sym-
metrical.

ja=d=l,b=c=O.
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T H E O R E M 173. If 5 and 7 are equivalent, ano! 77 and 5 are equivalent,
then 8 and 5 are equivaient.

q+bt=-,
q+d

ad-bc  = fl,

rl = a’C+b’
C?<+d”

a’&--b’c’  = f l ,

where

A = aa’ -+bc’, B = ab’+bd’, C = cu’+dc’, D = cb’+dd’,

AD-BC = (au-bc)(a’d’-b’c’) = fi.

We  may  also express Theorem 173 by saying that the relation of
equivalence  is transitive. The theorem enables us to arrange irrationals
in classes of equivalent irrationals.

If h and k are coprime  integers, then, by Theorem 25, there are in-
tegers  h’ and k’ such  that

hk’-h’k  = 1;

and then h h’.O+h a.O+b
-&=k’.O-tk=-3c.O+d

with ad-bc = - 1. Hence  any  rational h/k  is equivalent to 0, ad
therefore, by Theorem 173, to any other rational.

THEOREM 174. Any two ration&  numbers are equivalent.

In what follows we confine our attention to irrational numbers,
represented by infinite  continued fractions.

THEOREM 175. Two irrational numbers t and r) are equivalent if and
only if

(10.11.1)  5  = [a,,a, ,... ,a,,c,,c,,c,,...], 77  = [bO,blr...,bn,cg,cI,c~,...l,
the sequence of quotients in t after the m-th being the same  as the sequence
in v after the n-th.

Suppose first that .$ and 7 are given by (10.11.1) and write

0 = [CO,  Cl,  c2 >...  1.

T h e n .$  = [a,, a, ,...,  a,, w]  = “W~~~~:;
m

ad p, qm-l-pm-I  qm  = f 1, so, that 5 and o  are equivalent. Similarly,
7 ad w are equivalent, ad SO .$  ad 7 are equivalent. The condition is
therefore sutlicient.
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On the other hand, if 8 and 71  are two equivalent numbers, we have

%fb
~=~a’

ad-bc = f l .

We may  suppose cf+d  > 0, since  otherwise we may  replace the coe&
cients  by their negatives. When we develop 8 by the continued fraction
algorithm, we obtain

t = [%,  a,,...,  Uk>  %+w..]

Hence

ZZZ [a,,...,  >uk-l  u;]  = pk-l”ic+2jk-2.

qk-1  ak+qk-2

Pak+R
rl=Q&g9

where p = uPk-1-kbqk-1> R = UP,-d-b&-,,

Q = CPk-ii-dqk-l> fi = ~Pk-d-&k-~>

SO that P, Q, R, S are integers and

PS-QR = (ad-bc)(pk-lqk-2-pk-2qk-l)  = f 1.

By Theorem 171,

pk-1  == &k-l+6
qk-1’

Pk-2  = fqk-2d-
qk-2’

where 161  < 1, 18’1  < 1. Hence

New c&d  > 0, qk-r  > qk-2  > 0, and qkpl  and qke2  tend to infinity;
SO that Q>S>O
for sufficiently large k.  For such  k

E-I-R
77=&5+J’p

where P S - Q R  =  fi, Q>S>O, [=a;>  1;

and SO, by Theorem 172,

71  = [b,,,h,...,4,5]  = [bo,bl,...,br,ak,ak,l,...],

for some b,, bl,..., 6,. This proves the necessity of the condition.

10.12. Periodic continued fractions. A periodic continued fraction
is an infinite  continued fraction in which
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for a fixed positive k and a11 1 > L. The set of partial quotients

aL> aL+1y..e9  aL+k-l

is calletl the period,  and the continued fraction may  be written

[%, a,,..*,aL-l>  aL,uL+l~~~~aL+k-l 1 .

We  shah  be concerned only with simple perioclic continued fractions.

THEOREM 176.  A periodic continued fraction is a quadratic surd, ie.
a,n  irrational root of a quadratic equation with integral coeficients.

If a> is the Lt,h  complete quotient of the periodic continued fraction
x, we have ai = [aL, uL+l>.**>  uL+k-l>  uL>  uL+l,-*]

= [aL>aL+l>...,uL+k-l>a~],

ai = p’ak+p”

q’ai-j-q”  ’

(io.12.i) q’az+(q’-p’)ai-p”  = 0,

wherep”/q”  andp’/q’  are the last two convergents to [uL,  aLfl,...,  aLfkW1].

But x = PM~~+PG,
!lL-lai+qL-2

>
ai = P L - 2 - P L - 2  2

QIL-1  X-PL-1

If we substitut,e  for a; in (lO.lZ.l),  and clear of fractions, we obtain an
equation
(10.12.2) ax2+bxfc  = 0

with integral coefficients. Xince  x is irrational, b2-4ac  # 0.
The converse of the theorem is also  true, but its proof  is a little more

difficult.

THEOREM 177. The continued fraction which represents a quadratic
surd is periodic.

A quadratic surd satisfies  a quaclratic equation with integral coefi-
cients,  which we may  Write  in the form (10.12.2). If

x = [a,, a, ,...>  a, >...  1,

then x = Pd&+-Pn-2.
qn4G+L2  ’

and  if we substitute this in (10.12.2) we obtain

(10.12.3) A,az+B,ak+C,  = 0,
where

A, = ap~-lSbp,-lqn-lfcq~-l,

B, = 2ap,-lp,-2ib(p,-lq,-2+p~-2q,-l)+2cq,~-lq,-2,

C, = npW-2$-bp,-,q,-,/cqn-,.
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I f A, = ap~-,+bpn-lqn-l+cq7L-l  = 0,
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then (10.12.2) has the rational root pn-Jqnel,  and this is impossible
because x is irrational. Hence A, # 0 and

A,y2+B,y+C  = 0

is an equation one  of whose roots is an. A little calculation shows that

(10.12.4) R-4& CL = (b2-4ac)(pn-l  qn-2-pn-2  qn-J2

By Theorem 17  1,

= b2-4ac..

Pn-1  =  x%-l+;<  ‘ ( I L  < 1).

Hence

A, = a~q~_,+~)‘+bq,-~~q,_,+~)+cq~-,

= (.axz+bx+c)q~_,+2ax8n~~+a~l+bSn-,

= 2axSnA,+a21+  b6,-,,

and Pnl  < 2l4+lwbl~
Next, since  C,,  = A,-1,

Fil  -=c  2l4+l4+1~1~
Finally, by (10.12.4),

BE < 4jA,C,I+lb2-4acl

< 4(21axl+lal+lbl)2+lb2-4ac[.

Hence the absolute  values of A,, B,n,  and C, are less than numbers
independent of n.

It follows that there are only a finite  number of different triplets
(A,, B,,,  C,); and we cari  find a triplet (A, B, C) which occurs at least
three times,  say’  as (A,,, B,,,  G,),  (A,Z,  BnZ3 C,,,),  and (L,  QS, %).
Hence a;,,  an%,  an3 are a11 roots of

Ay2+By+C - 0,

and at least two of them must  be equal. But if, for example, an,  = as*,
then a na = an,, anz+l = a n,+l"'>

and the continued fraction is periodic.
0691 L
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10.13. Some special quadratic surds. It is easy to find the
continued fraction for a special surd such  as 2/2  or 113  by carrying out
the algorithm of 5 10.6 until it recurs.  Thus

(10.13.1) 42 = 1$(112-l)  = 1+&  = l+,+(j2-,)

=i+l-L=
2f 42+1

Ifl-L=
2+ 2+... [l,%

and, similarly,

(10.13.2) 43 = I+l-. 22 l- = [LLq,lf 2+ 1+  2+...

(10.13.3) 1/5=2+LL=
4f 4+... p, 41,

(1913.4) &2+‘_” l~ = [2, i, 1, 1,4].
1+  1+  1+  4+...

But the most interesting special continued fractions are not usually
‘pure’ surds.

A particular simple type is

(1613.5) x=b+‘L_ 1- = [&Ci],
a+ b+ a+ b+...

where a) b, SO that b = oc,  where c is an integer. In this case

x=b+== W+ l)x+b
a+x ax+l  ’

(10.13.6) x2-bx-c  =  0 ,

(10.13.7) x = ij{b+J(b2+4c)}.
In particular

ci= I+l 1 4!5+1- = [i] = 2>
1+  1+...

(10.13.9) /3=2++-&= [2] = 112+1,
. .  .

(10.13.10) y=2+‘1=
lf a+...

[S,  i] = 2/3+1.

It wih  be observed that j3  and y are equivalent, in the sense of 5 10.11,
to 42 and d3 respectively, but that O L  is not equivalent to 115.
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It is easy to find  a general formula for the convergents to (10.13.5).

THEOREM 178. The (n+  1)th convergent to (10.135)  is given by

(10.13.11) pn  = C-Mn+lllU
n+29

qn  = C-Lt(n+lllU
n+19t

where

(10.13.12)
x”-yn

u,  = -
X - Y

and x and y are the roots  of (10.13.6).

In the first place

q. = 1 = Ul, q1z+-25,XfY
c C

p,, = b = x+y  - u2> pl=ab+l=%= (“+Y)2-“Y  %=-,
c C c

so that the formulae (10.13.11) are true for n = 0 and n = 1. We prove
the general formulae by induction.

We have to prove that
p, = +t(n+lllU

nt2 = wnt2,

say.  N o w xn+2  = bxn+l+cx" > Y n+2  = byn+l+cyn,

and SO

(10.13.13) un+2 = b%+l+%*

But @'2m+2 = CrnW2&2, U 2m+l = CrnW2mt1*

Substituting into (10.13.13),  and distinguishing the cases of even and
odd n, we find  that

W 2m+2  = bw2m+lfw2m7 w2m+l  = aw2m+w2m-l.

Hence  w,+2 satisfies the same  recurrence  formulae as p,,  and SO

pn = w,,~. Similarly we prove that q, = w,+~.
The argument is naturally  a little simpler when a = b, c = 1. In

this case pn and qtL  satisfy
U - b%lS%nt2 -

and are of the form AxA+  Byn,

where A and B are independent of n and may  be determined from the
values of the first two convergents, We thus find  that

x"+2.- nt2Y xn+l- n-t1
Pn  =

Y
x-y > qn = x-y ’

in agreement with Theorem 178.

t The power of c is c- when n E 2m.  and c-m-* when n = 2m+  1.
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10.14. The series  of Fibonacci and Lucas. In the special  case
a = b = 1 we have

(10.14.1) z2.e,
2

y=-‘=-+
X

xniz- ni2 xn+l- A+1
P, = u,+z  = &Y  > qn = %+1 -

ay -
The series  (u,) or
(10.14.2) 1, 1, 2, 3, 5, 8, 13, 21,...

in which the first two terms are ur  and u2, and each  term after is the
sum of the two preceding, is usually called Fibonacci’s series.  There
are, of course, similar series  with other initial terms, the most interesting
being the series  (vn)  or
(10.14.3) 1, 3, 4, 7, 11, 18, 29, 47 >...

defined by
(10.14.4) v,  = xn+yn.

Such  series  have been studied in great detail by Lucas and later writers,
in particular D. H. Lehmer, and have very interesting arithmetical
properties. We shall corne across  the series  (10.14.3) again  in Ch. XV
in connexion with the Mersenne numbers.

We note here some arithmetical properties of these series,  and parti-
cularly of (10.14.2).

THEOREM 179. The  numbers u,and  v,de$ned by (10.14.2) and  (10.14.3)

have the following  properties:

6) (un,  u,+~)  = 1, (v,,  v,+d = 1;
(ii) u, and v,  are both odd or both euen,  and

(u,, un)  = 1, (Un,Vn)  = 2

in these two cases;
(iii) u, 1 u,,  for every r;
(iv) if (m, n) = d then

(Urn>UJ  = qj>
and, in particular,  u,, and  u, are coprime  if m and  n are cojkme;

(v) if (m,n) = 1, then
%n% I%n.

It is convenient to regard (10.13.12) and (10.14.4) as defining u,  and
v,,,  for a11  integral n. Then

u. = 0, vo  =  2
and
(10.145)  u-, = -(xy)-“u,  = (- l)n-lU,, v-,  = (- l)W,.
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We cari  verify at once that
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(10.14.6) %n+n = u,  v,+u,  v,,
(10.14.7) vi-5u;  = .(-1)“4,

(10.14.8) u~-u,-l  u,+l = (- l)n-i,

(10.14.9) v;-v,,-l  v,+l = (- l)n5.

Proceeding to the proof  of the theorem, we observe first that (i)
follows from the recurrence  formulae, or from (10.14.8),  (10.14.9),  and
(10.14.7),  and (ii) from (10.14.7).

Next,  suppose (iii) true for r = 1, 2 ,...,  R-l. By (10.14.6),

2%n  = U,v(R-l)n+U(tl-l)nv,,.

If u,,  is odd, then u,, j 2u,,  and SO u,,  1 uRn.  If u, is even, then v,, is even
by (ii), ~o-r),~  by hypothesis, and qn-ijn.  by (ii). Hence we may  Write

URn  = %-Z1V (Il-lh SU(R-lh * ht>

and again  u, 1 ulln.
This proves (iii) for a11 positive r. The formulae (10.14.5) then show

that it is also true for negative T.
TO prove (iv) we observe that, if (m,n) = cl, there are integers r,  s

(positive or negative) for which

rm+sn  = d,
and that

(10.14.10) 2Ud  = u, v,, fus, v,,,

by (10.14.6).  Hence, if (um,  u,) = h,  we have

+nl *hlu, + hlu,,  . hlu,, -s hj 2~.
If h is odd, h j ud. If h is even, then u,  and u, are even, and SO u,,,

usn, %rv  vs, are a11 even, by (ii) and (iii). We may  therefore Write
(10.14.10) as

Ud  = %m(B%n)  +%n(Jvrm)7
and it follows as before that h 1 ud. Thus h 1 ud  in any  case. Also ud  1 u,,

.ud  1 u,, by (iii), and SO ud  1 (um>  un)  = h.

Hence h  =  ud,
which is (iv).

Finally, if (WL,  1~)  ==  1, we have

%a I %w un I %n?t
by .(iii), and (un,  u,,) = 1 by (iv). Hence

uni  un  I %n*
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In particular it follows from (iii) that U, cari  be prime only when m
is 4 (when uq  = 3) or an odd prime p. But uP  is not necessarily prime:
thus

U 53  = 53316291173 = 953.55945741.
THEOREM 180. Every prime p divides  some Fibonacci number (and

therefore an injînity  of the numbers). In particular
upP1  E 0 (modp)

ifp = 5mf1,  and u~+~  s 0 (modp)
if p = 5m*2.

Since  uQ = 2 and ug  = 5, we may  suppose that p # 2, p # 5. It
follows from (10.13.12) and (10.14.1) that

(10.14.11) 2n-1~,  = nf
0 0
;5+ 5 52+...,

where the last term is 5*+i)  if n is odd and n. 5*“-l if n is even. If n = p
then

2p-1  s 1, 5*@-l)  = : (modp) ,
0

by Theorems 71 and 83; and the binomial coefficients are all divisible
by p, except  the last which is 1. Hence

uP-  i =fl(modp)
0

and therefore, by (10.14.8),
ZL~-~U~+~  = 0 (modp).

Also (p-l,p+l) = 2, and  SO

(up-l>up+l)  =  u2 =  1,
by Theorem 179 (iv). Hence one  and only one  of uPel  and upfl is
divisible by p.

TO distinguish the two cases, take n = p+l in (10.14.11). Then

29$+1 = (P+I)+
( 1
“3’ 5+...+(p+1)5”p-“.

Here a11 but the first and last coefficients are divisible by p,i and SO

2%P+l  = l+ i (modp).
0

Hence upfl z 0 (modp) if 5 = -1, i.e. if p E f2 (mod5),$ and
0

uPml  E 0 (modp) in the contrary case.
We shall give another proof  of Theorem 180 in 3 15.4.

t (y9 where 3 < Y 4 p- 1, is an integer, by Theorem 73 ; the numerrttor containa

p, and the denomiuator does  not. $ By Theorem 97.
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10.15. Approximation by convergents. We concIude  this chapter
by proving some theorems whose importance Will  become clearer in
Ch. XI.

By Theorem 171,

SO that p,/q,  provides a good approximation to x. The theorem which
follows shows that p,/qn  is the fraction, among a11  fractions of no greater
complexity, i.e. a11 fractions whose denominator does not exceed qn,
which provides the best approximation.

THEOREM 181. If n > l,t 0 < q < qn,  and  p/q # p,/qn,  then

(10.15.1)

This is included in a stronger theorem, viz.
THEOREM 182. If n > 1, 0 < q < qn,  and p/q  # p,lq,,  then

(10.15.2) IPCq,xl  < IP-q4
We may  suppose that (p,q)  = 1. Also, by Theorem 171,

IPn-qdd  < IPn-l,-q?41~
and it is sufficient to prove the theorem on the assumption that
qnel  < q < qn,  the complete theorem then following by induction.

Suppose first thatq  = qn.  Then

if p # pn. But
1 1<------< ->

%LLl  2%
by Theorems 171 and 156; and therefore

which is (10.15.2).

lb-xi  < (-p/,
Next suppose that qnpl  < q < qn,  SO that p/q  is not equal to either

of p,-,/q,-,  or pnlqn.  If we Write

~Pn-kVPn-1  = P, l-%+%l-l~  = cl,
t We state Theorems 181 and 182 for n > 1 in order to avoid a trivial complication.

The proof is valid for n = 1 unlew qa  = qn+1  = 2, which is possible only if a, = a8 = 1.
In this case

x ZZZ  ao+I  L -1 ‘2%
1+ 1+ aa+...’ - a,+L

rl-
and a,+t  < x -=z  f-%+1
unless the fraction ends at the second 1. If this is not SO then pl/ql  is nearer to z than  any
other integer. But in the exceptional  case x = a,+)  there are two integers equidistant
from x, and (10.15.1) may become an equality.
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then AP,q,-,-Pn-lq7J  = PP,-,--PP,-1,
SO that P = -t(Ilqn-1-qppn-1);
and similarly v = f(pq,,-qlî?J.
Hence tu  and Y are integers and neither is zero.

Since q = pqn+vqnel < qn, p and Y must have opposite signs. By
Theorem 17 1, Pn-q7LX> PVl-qn-lx
have opposite signs. Hence

AP,-q,, 4, “(P,-1 -PTL-ld
have the same  sign. But

P-P” = çL(P1L-qIL~)+v(Pn-l-q1L-lx),
and therefore

IP-PI  > IPn-l-qn-l?  > IPTL--q>Ixl.
Our next theorem gives a refinement on the inequality (10.9.1) of

Theorem 17 1.

THEOREM 183.  Of any two consecutive  convergents to x, one at least
sutisjies  the inequality

(10.15.3) Pl 1 1

--lt:  <n”’P

Since the convergents are alternately less and greater than x, we have

(10.15.4) ~p~-~~ = Iy  + lp,l.

If (10.15.3) were untrue for both p,,/q,  and pn+l/qn+l,  then (10.15.4)
would imply

or (q ILil -q702 < 0,
which is false except in the special  case

n = 0, a, = 1, ql=qo=  1.

In this case

0 <B--x = 1-L ~1

!Il 1+  a,+...
< IL&  <;,

2

SO that the theorem is still true.
It follows that, when x is irrational, there are an infinity of con-

vergents pn/qn  which satisfy (10.15.3). Our last theorem in this chapter
shows that this inequality is  characteristic of convergents.
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TREOREM  184. If
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(10.15.5) PI l 1

--II: <%Fq
then p/q  is a convergent.

If (10.15.5) is true, then
P Ee--x = -2,
q q

where C=*l, o<e<&.

We  cari  express p/q as a finite  continued fraction

[a,,  a,,..., 4 ;
and since, by Theorem 158, we cari  make n odd or even at our discretion,
we may  suppose that E = (-1)%-l.

We Write x = WPn+P,-l

~&+%a-1  ’

where p,/q,, pn-JqnP1  are the last and the last but one  convergents to
the continued fraction for pjq. Then

Ce P_ n?x = P,q,-l-P,-lP?l= (-1),-l

z- qn %hJq,+q,-1) s&Jqn+%L-1)’

and SO qn  ,e
wn+GL-1  *

1 P-1w=--X>l
e qn

(since o < 0 < 4); and SO, by Theorem 172, p21n-1/qn-1  and p,/q,  are
consecutive  convergents to X. But p,/q,  = p/q.

NOTES .ON  CHARTER X
5 10.1. The best and most complete  account of the theory of continued frac-

tions is that in Perron% Kettenbrüche; and many proofs in this and the next chapter
are modelled on those given in this book or in the same writer’s Irrationalzahlen.
The only extended treatment of the subject in English is in Chrystal’s Algebra, ii.
Perron gives full references  to the history of the subject.

0 10.12. Theorem 177 is Lagrange’s most famous contribution to the theory.
The proof  given hem  (Perron, Kettenbrüche, 77) is due to Charves.

$1 10.13-14. Therc is a large literature concerned  with Fibonacci’s and similar
series. See Bachmann, Niedere Zahlentheorie, ii, ch. ii; Dickson, History,  i, ch. xvii;
D. H. Lehmer, Ann&  of Math. (2),  31 (1930), 419-48.



XI

APPROXIMATION OF IRRATIONALS BY RATIONALS

11.1. Statement of the problem. The problem considered in this
chapter is that of the approximation of a given number 5,  usually
irrational, by a rational fraction

We suppose throughout that 0 < [ < 1 and that pjq  is irreducible.?
Since  the rationals are dense in the continuum, there are rationals as

near as we please to any  .$. Given .$  and any  positive number E, there is
an r = p/q  such  that

I-61  = 1pp-5/ < E;

any  number cari  be approximated by a rational with any  assigned degree
of accuracy. We ask now how simply  or, what is essentially the same
thmg,  how rapidly cari  we approximate to c? Given c and E, how com-
plex must p/q  be (i.e. how large q) to secure  an approximation with the
measure of accuracy E ? Given .$ and q, or some Upper  bound for q, how
small cari  we make E?

We have already done something to answer these questions. We
proved, for example, in Ch. III (Theorem 36) that, given c and n,

gp,q.O<q<n.

and a fortiori

(11.1.1)

and in Ch. X we proved a number of similar theorems by the use of
continued fractions. $ The inequality (11.1. l),  or stronger inequalities
of the same  type, Will  recur  continually throughout this chapter.

When we consider (11.1.1) more closely, we find at once that we must
distinguish two cases.

(1) 5  is a rational alb. If r # 4,  then

(11.1.2)

so that (11.1.1) involves q < b. There are therefore only a finite  number
of solutions of (11.1.1).

t Except in 5 11.12. $ See Theorems  171 and 183.
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(2) 5 is irrutional.  Then there are an infinity of solutions of (11.1.1).
For, if p,/q,  is any  one  of the convergents to the continued fraction
to 6,  then, by Theorem 171,

and p,/q,  is a solution.

THEOREM 185. If .$  is irrationul,  then there is an in$nity of fractions
p/q which sutisfy (11.1.1).

In $ 11.3 we shall give an alternative proof,  independent of the theory
of continued fractions.

11.2. GeneraJities concerning the problem. We cari  regard our
problem from two different points of view. We suppose .$  irrational.

(1) We may  think first of E. Given 5,  for what functions

is it true that

(11.2.1)

for the given f and every positive E ? Or for what functions

independent of 5,  is (11.2.1) true for every 5 and every positive . E  ? It
is plain that any  <D with these properties must tend to infinity when
E tends to zero, but the more slowly it does SO the better.

There are certainly sotie functions 0 which have the properties
required. Thus we may  take

and q = @.  There is then a p for which

and SO this CD  satisfies our requirements.  The problem remains of find-
ing, if possible, more advantageous forms of @.

(2) We may  think first of q. Given 5,  for what functions

d = W>d>
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tending to infinity with q, is it true that

[Chap. XI

Or for what functions + = +(a),
independent of t, is (112.2) true for every .$  ? Here, naturally, the
Earger  4 the better. If we put the question in its second and stronger
form,  it is substantially the same  as the second form of question (1).
If 4 is the function inverse to a>,  it is substantially the same  thing to
assert  that (112.1) is true (with 0 independent of 5)  or that (11 .Z.O)
is true for a11 f and q.

These questions, however,  are not the questions most interesting to
us now. We are not SO much  interestecj  in approximations to ,$ with
an arbitrary denominator q, as in approximations with an appropriately
selected q. For example, there is no great interest  in approximations
to r with denominator 11; what is interesting is that two particular
denominators, 7 and 113, give the very striking approximations 3;  and
fQ$. We should ask, not how closely we cari  approximate to 5 with an
arbitrary q, but how closely we cari  approximate for an infinity  of
values of q.

We shall therefore be occupied, throughout the rest of this chapter,
with the following problem: for what C$  = c#,  q), or 4 = +(a),  is it truc,
for a given f, or for a11 5,  or for a11 t of some interesting class,  that

for an in$nity  of q and appropriate p ? We know already, after Theorem
171, that we cari  take $ = q2 for a11  irrational 5.

11.3. An argument of Dirichlet. In this section we prove Theorem
185 by a method independent of the theory of continued fractions.
The method gives nothing new, but is of great importance because it
cari  be extended to multi-dimensional prob1ems.t

We have already defined [xl,  the greatest integer in x. We define
(2) by (x) = x-[xl;
and 2 as the difference  between x and the nearest integer, with the
convention that Z =:  $ when x is n+$. Thus

ri1 = 1, (p)  = & 5-3 - -g.
Suppose 5 and l given. Then the &+ 1 numbers

0, (5),  (299  .*‘>‘(&r)
t See § 11.12.
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define  Q+ 1 points distributed among the Q intervals or ‘boxes’

s<x<--sfl
Q Q (s = o, l,...,  Q-l).

There must be one  box which contains  at least two points, and there-
fore two numbers q1 and q2,  not greater than Q, such  that (ql[)  and
(q2t)  differ by less than  l/Q.  If qz is the greater, and q = q2-ql,  then
0 < q < Q and Iq[l  < l/Q. There is therefore a p such  that

Hence, taking Q = [-]l fl,E

we obtain

(which is nearly the same  as the result of Theorem 36) and

(11.3.1)

which is (11.1.1).

If 6 is rational, then there is only a finite  number of so1utions.t  We
have to prove that there is an infinity  when 5 is irrational. Suppose that

Pl PZ  Pk
,’ a,’  -.*>  Fk

exhaust the solutions. Since  E is irrational, there is a Q such  that

I lF-’ >; (s= 1,2  ,...,  k) .
s

But then the p/q of (11.3.1) satisfies

and is not one  of pslqs;  a contradict’ion.  Hence the number of solutions
of (11.1.1) is infinite.

Dirichlet’s argument proves that q( is nearly an intrger, SO that (96)  is nearly
0 or 1, but does  not distinguish botween these cases.  The argument of § 11.1
gives  rather more: for

~-~A!&

ir
is positive or negative according  as 12  is odd or even, and q,[  is  alternately a
little less and a little greater than pn.

t The proof of this in 5 11 .l  was independent of continued fractions.
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11.4. Orders of approximation. We  shall say  that 5‘ is approxim-
able by rationals  to  order n if there is a K(t),  depending only on t, for
which

(11.4.1)

has an infinity of solutions.
We  cari  dismiss  the trivial case in which 5 is rational. If we look back

at (11.1.2),  and observe that the equation bp-aq = 1 has an infinity
of solutions, we obtain

THEOREM 186. A rational is approximable to order 1, and to no higher
order.

We  may  therefore suppose 5 irrational. After Theorem 171, we have

THEOREM 187. Any irrational is approximable to  order 2.

We  cari  go farther when c is a quadratic surd (i.e.  the root of a
quadratic equation with integral coefficients). We shah  sometimes
describe  such  a t as a quadratic irrational, or simply as ‘quadratic’.

THEOREM 188. A quadratic irrational is approximable to  o$er  2 and
20  no higher order.

The continued fraction for a quadratic 5 is periodic, by Theorem 177.
In particular its quotients are bounded, SO that

0 < a, < M,

where M. depends only on .$.  Hence, by (10.5.2),

dz+,  = aL+lqn+qa-l  < (a,+, +lk,+q,-1  < W+%zn

and a fortiori qn+l < (M+2)q,.  Similarly qn

Suppose now that qn-1  < P G qn.

Then qn  < (M+2)q  and, by Theorem 181,

1 K
> (M+2)3q;-, ’ ?’

where K = (M+2)-3; and this proves the theorem.
The negative half of Theorem 188 is a special  case of a theorem

(Theorem 191) which we shall prove in 5 11.7 without the use of con-
tinued fractions. This requires some preliminary explanations and some
new definitions.
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11.5. Algebraic and transcendental numbers. An algehic
number is a number x which satisfies an algebraic equution,  i.e. an
equation
(11.51) aoxn+alxn-l+..,.+an  = 0,

where a,,, a,,... are integers, not all zero.
A number which is not algebraic is called transcendental.
If x = a/b,  then bx-a = 0, SO that any  rational x is algebraic. Any

quadratic surd is algebraic; thus ,i =:  ,/(-  1) is algebraic. But in this
chapter we are concerned with real algebraic numbers.

An algebraic number satisfies any number of algebraic equations of
different degrees; thus x = 1/2  satisfies x2-2  = 0, x4-4  = O,... . If x
satisfies an algebraic equation of degree n, but none  of lower degree,
then we say  that x is of degree n. Thus a rational is of degree 1.

A number is Euclidean if it measures a length which cari  be con-
structed, starting from a given unit length, by a Euclidean construction,
i.e. a finite  construction with ruler and compasses only. Thus 2/2  is
Euclidean. It is plain that we cari  construct  any  finite  combination of
real quadratic surds, such as

(11.5.2) 2/(11+22/7)-J(ll-247)

by Euclidean methods. We may  describe such  a number as of real
quadratic type.

Conversely, any Euclidean construction depends upon a series  of
points defined as intersections of lines  and circles. The coordinates
of each  point in turn are defined by two equations of the types

lx+my+,n  = 0
or x2+y2+2gx+2fy+C  = 0,

where 1,  m, n, g, f, c are measures of lengths already constructed; and
two such  equations define  x and y as real quadratic combinations of
1, m,... . Hence  every Euclidean number is of real quadratic type.

The number (11.5.2) is defined by

x = y-z, y2  = 11+2t, 22  = 11-2t 7 t2  = 7

and we obtain x4-44x2+112  =  0

on eliminating y, z, and t. Thus x is algebraic. It is not difficult  to
prove that any  Euclidean number is algebraic, but the proof  demands
a little knowledge of the general theory of algebraic numbers.?

t In fa&  any number defined by an equation a,,  xn+cxl  ~“-‘+...+a,  = 0, where
ao. %>....  %a are algebraic, is algebraic. For the proof  se8  Hecke 66, or Hardy, Pure
mathematics  (ed. 9, 1944), 39.
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11.6. The existence of transcendental numbers. It is not imme-
diately obvious that there are any  transcendental numbers, though
actually, as we shall see in a moment, almost a11 real numbers are
transcendental.

We may  distinguish three different problems. The first is that of
proving the existence of transcendental numbers (without necessarily
producing a specimen).  The second is that of giving an esample of
a transcendental number by a construction specially designed for the
purpose. ,The  third, which is much  more difficult,  is that of proving
that some number given independently, some one  of the ‘natural’
numbers of analysis,  such  as e or r, is transcendental.

We may  define  the rank of the equation (11.5.1) as

N = n+lu,l+lu,I+...+lu,l.

The minimum value of N is 2. It is plain that there are only a finite
number of equations

EN.~  EN.~,  ---y EN~,
of rank N. We cari  arrange the equations in the sequence

Ez.1,  Ez,w..>  Ez,tca>  Es.1,  Ex,w..>  -%,ks>  E4,w..
and SO correlate them with the numbers 1, 2, 3,...  . Hence the aggregate
of equations is enumerable. But every algebraic number corresponds
to at least one  of these equations, and the number of algebraic numbers
corresponding to any  equation is finite.  Hence
THEOREM 189. The uggregate of ulgebraic numbers is enumeruble.
In particular, the aggregate of real algebraic numbers has measure

zero.
THEOREM 190. Almost dl real numbers are trunscendentul.
Cantor, who had not the more modem  concept of measure, arranged his proof

of the existence of transcendental numbers differently. After Theorem 189, it is
enough to prove  that the continuum 0 < z < 1 is not enumerable. We reprenent
z by its decimal x  =  .a,a,a,...
(9 being excluded, as in 5 9.1). Suppose that the continuum is enumerable, as
x1, q,  x3  ,..., and let x1  = .alla,za,,...

2% = ~a21a22a23...
x3  = -a3,a32a33...

. . . . .
If now we define  a, by

a R  = anm t 1 (if ans is neither 8 nor 9),
a n-- 0 (if ann is 8 or Q),

then a,  fa, , for any n; and z cannot be an4  of xi, x2,...,  since  its decimal
differs from that of any 2, in the nth digit. This is a contradiction.
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11.7. Liouville’s theorem and the construction of transcen-
dental numbers. Liouville provcd a theorem which enables us to
produce as many  examples of transcendental numbers as we please. It
is the generalization to algebraic numbers of any  degree of the negative
half of Theorem 188.

T HEOREM  191. A real algebraic number of degree n is not approximable
to any  order  greater than  12.

An algebraic number [ satisfies a4 equation

f(f) = a,.fn+altJn-l+...+a,  = 0

with integral coefficients. There is a number M(t)  such  that

(11.7.1) lf’(x)1  < Jf (C-1  < x < 5+1).

Suppose now that p/q # [ is an approximation to 5.  We  may  assume
the approximation close enough to ensure.  that p/q lies in (t-1,  .$+  l),

and is nearer to e than any  other root of f(x) = 0, SO  that f(p/qj  # 0.
T h e n

(11.7.2) l OI
f E = laoP+w~-lq+...I  > i

q P” ’ qn’
since  the numerator is a positive integer;  and

(11.7.3) f(Pp)  =f($-f(5) = (;-t)f>(xL

where x lies between p/q  and t. It follows from (11.7.2) and (11.7.3) that

SO that .$  is not approximable to any  order higher than n.
The cases n = 1 and n = 2 are covered by Theorems 186 and 188.

These theorems, of course, included a positive as well as a negative
statement.

(a) Suppose, for example, that

cf  =  ~110001000...  = lO-1!+10-2!+10-=+...,

that n > N, and that 5, is the sum of the first n terms of the series.
T h e n

say.  Also

0 < f-; = f-5, = lo-(n+‘)‘+  10-@+a!+...  < 2. lo-(“+l)!  < 2q-N.

5501 M
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Hence  6 is not an algebraic number of degree less  than N. Since  N is
arbitrary, 5 is transcendental.

(6) Suppose that

&L?Y-  l
10+  102’+ Wf...

that n > N, ad that P Pn-=-
4 qn’

the nth convergent to 8.  Then

I lz-t =+a&<&.
78 n+1

Now a,,, = lO@+l)l  ad

Ql  < a,+L - = a,+,+?  < a,+l+l  (n > 1);cl?&+1

qn 11
SO that

qn  < (al+l)(a2+l)...(a,+l)

< 2a,a,... a, z 2.1@~+-.+“1  < l()WU  = an,

We conclude, as before, that .$  is transcendental.

THEOREM 192. The numbers
4 = 10-1~+10-2’+10-3’+...

and 1 1 1
5 = 1o”t-  102’-c 10x’+...

are transcendental.
It is plain that we coula replace 10 by other integers, and vary the

construction in many  other ways. The general principle  of the construc-
tion is simply that a number dejîned by a sufJiciently  rapid sequence  of
rational approximations is necessarily transcendental. It is the simplest
irrationals, such  as 42 or $(215-l),  which are the least rapiclly ap-
proximable.

It is much  more difficult  to prove that a number given ‘naturally’ is
transcenclental.  We shall  prove e and 7r  transcendental in $5  11.13-14.
Few classes of transcendental numbers are known even now. These
classes include,  for example, the numbers

e, T,  sin 1, Jo(l), log 2, -,k3 en

log 2
, 242
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but  not 2e,  277, ne,  or Euler’s constant y. It has never been proved even
that any of these last numbers are irrational.

11.8. The measure of the closest  approximations to an arbitrary
irrational. We know that every irrational has an infinity of approxi-
mations satisfying (11.1. l), and indeed, after Theorem 183 of Ch. X,
of rather better approximations. We know also that an algebraic.
number, which is an irrational of a comparatively simple type, cannot
be ‘too rapidly’ approximable, while the transcendental numbers of
Theorem 192 have approximations of abnormal rapidity.

The best approximations to f are given, after Theorem 181, by the
convergents pJq,,  of the continued fraction for 5; and

I I
p-t =-+-&

n 11  n+1

SO that we get a particularly good approximation when a,,,  is large. It
is plain that, to put the matter roughly, .$  Will  or Will  not be rapidly
approximable according as its continued fraction does or does not
contain  a sequence  of rapidly increasing quotients. The second E of
Theorem 192, whose quotients increase with great rapidity, is a particu-
larly instructive example.

One  may  say,  again  very roughly, that the structure of the continued
fraction for E affords a measure of the ‘simplicity’ or ‘complexity’  of 5.
Thus the second 5 of Theorem 192 is a ‘complicated’ number. On the
other hand, if a, behaves regularly, and does not become too large, then
.$  may  reasonably be regarded as a ‘simple’ number; and in this case
the rational approximations to t be too Pood. From the point
of view of rational approximation lest&ers  are the worst JJ

The ‘simplest’ of a11  irrationals, point of view, is the number

(11.8.1) +$(115-l)=+&&,
. . .

in which every a, has the smallest possible value. The convergents to
this fraction are 0 1 1 2 3 6

1, 1> 29 3, 5> g>***

-SO that qnP1  = pn and

Hence

qn-1 Pn- = 4 -+ 5.
qn n

when n-tco.
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These considerations  suggest the truth of the following theorem.

THEOREM 193. Any irrational  5 has an in$nity  of  approximations  which
satisfy

(11.8.2) / I$4 < k5.
The proof  of this theorem requires some further analysis of the

approximations given by the convergents to the continued fraction.
This we give in the next section, but we prove first a complement to
the theorem which shows that it is in a certain sense a ‘best possible’
theorem.

THEOREM 194. In Theorem  193, the  number  115  is the  best  possible
number:  the  theorem  would  become  false if any  larger  number  were  substi-
tuted  for 115.

It is enough to show that, if A > 45, and [ is the particular number
(11.8.1),  then the inequality

has only a finite  number of solutions.
Suppose the contrary. Then there are infinitely many  q and p such

that

Hence 6
- = a&p,

6

q
--*q2’5  = -&q-p,
Q

f- 645  = (+q+p)s-pq”  = p2$pq-q2.

The left-hand side  is numerically less than 1 when q is large, while the
right-hand side  is integral. Hence p2fpq-q2  = 0 or (2p+q)2  = 5q2,
which is plainly impossible.

11.9. Another theorem concerning the convergents to a con-
tinued fraction. Our main abject in this section is to prove

THEOREM 195. Of any  three  consecutive  convergents  to  [, one  ut  least
satis$es  (11.8.2).

This theorem should be compared with Theorem 183 of Ch. X.
We Write

(11.9.1) qn-1  b-=
qn

R+l'
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T h e n

and it is enough to prove that

(11.9.2) aa+b,  < &

cannot be true for the three values n-l, n, n+l of i.
Suppose that (11.92) is true for i = n- 1 and i = n. We have

ai-, = a,-, +-$
n

and
1-=Qn-1

bn qn-2
:= an-l+b,-l.

-$+k  = aa-,+b,-,  < d5,
n’

1 = a; -$ < (45-b,)

or b& < 45.
A

Equality is excluded, since 6, is rational, and 6, < 1. Hence

b;-b,  1’5+  1 < 0, (&2/5-b,A2  < ;,

(11.9.4) b, > 9(115-l).

If (11.9.2) were true also for i == n+ 1, we could prove similarly that

(11.9.5) b,,, > 7X45-1);

and (11.9.3),7  (11.9.4), and (11.9.6) would give

a, = $--bm  < &(115+1)--+(45-l)  =  1 ,
n+l

a contradiction. This proves Theorem 195, and Theorem 193 is a
corollary.

11.10. Continued fractions with bounded quotients. The number
& has a special  status, in Theorems 193 and 195, which depends upon
the particular properties of the number (11.8.1). For this t, every a, is
1; for a 5 equivalent to this one, in the sense of 3 10.11, every a, from
a certain point is 1; but, for any other f, a, is at least 2 for infinitely
many  n. It is natural to suppose that, if we excluded f equivalent to
(11.8.1),  the 2/5  of Theorem 193 could be replaced by some larger

t With nf 1 for n.



1 6 6 APPROXIMATION OF [Chap. XI

number; and this is actually true. Any irrational [ not equivalent to
(11.8.1) has an infinity  of rational approximations for which

There are other numbers besides 45 and 242 which play a special  part
in problems of this character, but we cannot discuss these problems
further here.

If a, is not bounded, i.e.  if

(11.10.1) lima,=co,
n-t02

then qk+Jq, assumes arbitrarily large values, and

(11.10.2) I /;-t <;
for every positive E and an intînity  of p and q. Our next theorem shows
that this is the general case, since (11.10.1) is true for ‘almost all’ 5 in
the sense  of 3 9.10.

THEOREM 196. a, is unbounded for almost ail  .$;  the set of [for which
a, is bounded is null.

We  may  confine our attention to 5 of (0, l), SO that a, = 0, and to
irrational c,  since the set of rationals is null. It is enough to show that
the set Fk  of irrational 5 for which

(11.10.3) a, d k

is null; for the set for which a, is bounded is the sum of F,,  Fz,  FS,...  .

We  denote by Ea,. aa,...,  a,
the set of irrational 6 for which the first  n quotients have given values
a,,  a,,..., a,. The set E,,  lies in the interval

1 1
a,+l’ Zl’

which we cal1 Iaa,.  The set E,,,.z lies in

1 1 1 1
- -  -3
a,+ a2 a,+a,fl’

which we cal1 10,,  al. Generally, E,,,  a *,...,  a, lies in the interval .&,,  a ,,,..,  a,
whose end points are

[a,,  a2,...,  a,-,,  a,+l], [a,,  a2,... a,-,,  4
(the first being the left-hand end point when n is odd). The intervals
corresponding to different sets a,, a2,...,  a, are mutually exclusive
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(except that they may  have end points in common), the choice  of ay+1

~Via3  UP  4z,,a  I,...,  Cz” into exclusive intervals. Thus la,,  (1~  ,...,=”  is the
sum of IUl,  a,,..., a., 1’ Ia,,az,...,a,.  2>"'  *

The end points of I=,,  at ,...,  (1.  cari  dso  be expressed as

(%+1)Pn-l+Pn-2

(%+~~%s-l+Qn-2'

%Pn-l+Pn-2;
a, 41n-1+qn-2

and its length (for which we use the same  symbol as for the interval) is

Thus

We  denote by Ea,, a:~,..., a,; k
the sub-set of Ea,,.o...,.n  for which u,,~ < k. The set is the sum of

Eai, az,...,  a., a, t 1 (a,,, = 1,2  >...>  k).

The last set lies in the interval  la,, ar,...,  a,,,  a,+,,  whose end points are

[ a,,a,,...,a,,a,+,+l],  [a,,a,,...,a,,a,,+,];

ana so  Eal, a2 ,...,  a.; k
lies in the interval  la,,  ar,...,afl;k  whose end points are

[al,a2,..., a,, k’l], [a,,  a2>...>  a,,  11,

or (k+l)p,+p,+ PnSPn-1
(k+l)q,+a,-11  ’ !I?L+!L

The  length  Of ha,,  a ,y.., a,; k is
k

ad
{(k+l)q,+q,,-,)(q,+q,-1)’

(11.10.4)
Ia,.  ns....,  a,:  k ks, k
Ia,. ah..,  a. = (k+l)q,+q,-,-=c  k+i’

for a11 a,, a2 ,...,  a,.
Finally, we denote by

the sum of the I, ,,...,  a.  for which a, 2s  k ,...,  a, < k; ad by Fk) the set of
irrational f for which a, < k,..., a, < k. Plainly F’1(’  is included in Ip).

First, ikl)  is the sum of la, for a, = 1, 2 ,...,  k, ad
k

Q’ =
c

1 1 k
--=l-----=-----*

a,=1 %(a,+  1) -+1 k+l
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Generally, 1p+ l) is the sum of the parts of the Ia,,, *,..,,  Cln,  included in
Ip),  for which a,,, < k, i.e. is

I:
a,<k,...,a.Sk

‘a,,  aa,...,  a,; k*

Hence, by (11.10.4),
kIjy’) < ~

k+l c Ia,, ao...  a. = -&+y);
a,=Zk,...,a,,<k k+l

and SO @+l’ < & *+l.( 1
It follows that Fp)  cari  be included in a set of intervals of length less

than k n

( 1Ic+i’
which tends to zero when n -+co. Since  Fk  is part of Fin)  for every n,
the theorem follows.

It is possible to prove a good deal more by the same  kind of argument.
Thus Bore1 and F. Bernstein proved

T HEOREM 197*. If+( n ) is an increasing jùnction  of n for which

(11.10.5)

is divergent, then the set of 5 for which
(11.10.6) a, < 4(n),
for a11 suficiently large n, is null.  On the other hand,  if

(11.10.7)
c &

is convergent, then (11.10.6) is true for almost ail  .$  and  suficiently  large n.
Theorem 196 is the special  case of this theorem in which 4(n) is a

constant. The proof  of the general theorem is naturally a little more
complex, but does not involve any  essentially new idea.

11 Al.  Further theorems concerning approximation. Let  us suppose,  to
fix our  ideas, that a, tends steadily, fairly regularly,  and not too rapidly, to
infinity. Thon

! l
F!i-,  = 1 1 ‘1

qn
)-y=-,
qn  qn+1 a,+,  qn qn  X(Qn)

w h e r e X(4n) = %+14w

There is a certain correspondence  between the behaviour, in, respect of con-
vergence or divergence, of the seriest

c
1

” g&ï’ c
qn- -  .

n  X(4n)’

t The idea is that  underlying ‘Cauchy’s condensation test’ for the convergence or
divergence of a series of decreasing positive terms. See Hardy, Pure mathematics,  9th
ed., 354.
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and the latter series  is c 1
-.
‘%+l

These rough considerations suggest that, if we compare the inequalities

( 1 1 . 1 1 . 1 )

a n d

( 1 1 . 1 1 . 2 )

a, <:  54n)

there should be a certain correspondence  between conditions on the two series

And the theorems of 8 11.10 then suggest the two which follow.

THEOREM 198. Ij c 1

33

is convergent, then the set off which aatiafy  (11.11.2) for an infinity  of q is null.

THEOREM 199*. If x(q)/q increases  with q, and

c 1

x(pj

is divergent, then (11.11.2) is Pue,  for an infinity  of q, for almost  a11  5.

Theorem 199 is difficult. But Theorem 198 is very  easy, and  cari  be proved
without continued  fractions. It shows, roughly, that most irrationals cannot be
approximated by ration&  with an error of order much  less than p-%,  e.g. with
an error

&&l-

The more difficult theorem shows that approximation to such orders as

oip-ï&)9  O(q~logq:oglogq)’  *-*
is usually possible.

We may suppose 0 c 5 < 1. We enclose every p/q  for which q > N in an
interval

P 1- - -
Q PX(P)’ :+&ï*

There are less than q values of p corresponding to a given q, and the total length
of the intervals is less (even without allowance for overlapping)  than

CO

2
2

1

N x0’

which tends to 0 when N -f  CO. Any  6 which has the property is included in an
interval, whatever be N, and the  set of l cari  therefore be included in a set of
intervals whose total length is as small as we please.

11.12. Simultaneous approximation. SO far we have been con-
cerned  with approximations to a single irrational (. Dirichlet’s argument
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of 4 11.3 has an important application to a multi-dimensional problem,
that of the simultaneous approximation of k numbers

i%, 52>...>  tk

by fractions

with the same  denominator q (but not necessarily irreducible).

THEOREM 200.  If fl, f2,...,  tk are any  real numbers, then the system of
inequulities

(11.12.1) l~--fdl<-&  (p=k;  i=l,2,...,k)

has at least one  solution. If one  f at least is irrational, then it bus  an
infinity  of solutions.

We  may  plainly suppose that 0 < fi < 1 for every i. We  consider
the k-dimensional ‘cube’ defined by 0 < xi  < 1, and divide it into Qk
‘boxes’ by drawing ‘planes’ parallel to its faces at distances l/Q.  Of
the Qk+l  points

(@,), (@2)>--3  (&) (l = o,l,  L.,  Qk),
some  two, corresponding say  to 1 = q1 and 1 = q2 > ql,  must lie in the
same  box. Hence, taking q = q2-ql, as in 3 11.3, there is a q < Qk
such  that - 1

Idi1  < Q < $

for every i.
The proof  may  be completed as before; if a 5,  say  &,  is irrational, then

fi may  be substituted for 5 in the final argument of 6 11.3.
In particular we have

THEOREM 201. Given fl, c2 ,..., tk  and any  positive E, we cari  Jind  an
integer q SO that qti  differs  from  an integer, for every i, by less  than E.

11.13. The transcendence  of e. We conclude this chapter by
proving that e and 7~  are transcendental.

Our work Will  be considerably simplified by the introduction of a
symbol hr,  which we define  by

h”=  1, h’  = r! (T  3 1).

If f(s) is any  polynomial in x of degree m, say

then we define  f (h) as
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(where O! is to be interpreted as 1). Finally we define  f(x+h)  in the
manner suggested by Taylor’s theorem, viz. as

Iff(x+y)  = F(y),  thenf(x+h)  = F(h).

We  define  u,(x)  and E,(Z),  for T = 0, 1, 2 ,...,  by

u,(x) = 2+
X2

r+l (r+l)(r+2)f*-
= e&,(x).

It is obvious that I~,(x)1  < elxl,  and SO

(11.13.1) le(x)l < 1,
for all x.

We require two lemmas.

THEOREM 202. If 4(x) is any polynomial and

(11.13.2) 6(x) =r&rxT2 Jtw =r&r  ‘,(X)X’>
then
(11.13.3) e%$(h)  = +(x+h)+#(x)elz~.

By our definitions.above we have

(x+h)’ = h~+rxhr-‘+T$+)x2hr-2+...+xr

= r!+r(r-I)!x+ 9(‘-2)!22+,..+x~

= r!
(
1+x+;+...+;

.)
= r! ez--u,(x)xr  = e%hp-u,(x)x’.

Hence ezhr  =  (x+h)‘+u,(x)xr  =  (x+hh)‘+el%,(x)Z.

Multiplying this throughout by c,.,  and summing, we obtain (11.13.3).
As in 5 7.2, we call  a polynomial in x, or in x, y, . . . . whose coefficients

are integers, an integral polynomial in 5, or 2, y,... .

THEOREM 203. If m > 2, f(x is an in(egral  polynomial in 5,  and)

F,(x)  == (m-1)!c-.f(x)r  ~3x4  = (m~l)!fo.

then F’(h), F!(h) are integers and

F,(h)  = f(O), B!!(h) = 0 (modm).
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Suppose that f(x)  =z$o~zx!

where a,,,..., aL  are integers. Then

[Chap. XI

ad SO

But

is an integral multiple of m if Z > 1; ad therefore

Similarly
F,(h)  s a,  =f(O)  (modm).

F,(h)  =  5 azB s 0  (modm).

z=o

We  are now in a position to prove the tîrst  of our two main theorems,
namely

T HEOREM 204. e is transcendental.

If the theorem is not true, then

(11.13.4)

where n > 1, CO, Cl ,..., C, are integers, and  CO  # 0.
We  suppose that p is a prime greater than max(n, /Col),  and define

a) bY
$44 = &!  {(x-l)(z-2)...(x-n))“.

Ultimately, p will be large. If we multiply (11.13.4) by 4(h), ad use
(ll.l3.3), we obtain

t~o~d(t+h)+~~o~~(t)ez  = 0,
or

(11.13.5) SI+S,  = 0,

say.
By Theorem 203, with m = p, r,A(h)  is an integer and

4(h)  = (-lp(n!)P (modp).
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Again,  if 1 < t < n,

1 7 3

$(t+x)  = (~~~~~~(,+,-l)...~(,-l)...(,+,-,)},  = &j(X),

wheref(z)  is an integral polynomial in x.  It follows (again  from Theo-
rem 203) that $(t+h)  is an integer divisible by p. Hence

Si  =IzOq$(tfh)  E (-l)“%‘,(n!)p  $ 0 (modp),

since  C,,  # 0 and p > max(n, IC,,l).  Thus S, is an integer, not zero; and
therefore
(11.13.6) ISll  à 1.

On the other hand, jr,(z)l  < 1, by (11.13.1),  and SO

IW 4olc,lt’
< ~,{(t+l)o...(t+li.)}P  -+ 0

when p -+  CO.  Hence S, + 0, and we cari  make
(11.13.7) IS2l < 4
by choosing a sufficiently large value of p. The formulae (11.13.5),
(11.13.6), and (11.13.7) are in contradiction. Hence (11.13.4) is impos-
sible and e is transcendental.

The proof  which precedes is a good deal more sophisticated than the
simple proof  of the irrationality of e given in 5 4.7, but the ideas which
underlie it are essentially the same.  We use (i) the exponential series
and (ii) the theorem that an integer whose modulus is less than 1
must be 0.

11.14. The transcendence  of r. Finally we prove that 7~  is
transcendental. It is this theorem which settles the problem of the
‘quadrature of the circle’.

T HEOREM 205. n is  transcendentd.

The proof  is very similar to that of Theorem 204, but there are one
or two slight additional complications.

Suppose that  fil,  A,,...,  A,, are the roots of an equation
dxm+dlxm-l+...+d,  =  0

with integral coefficients. Any symmetrical integral polynomial in

dlsl, %>...>  4%
is an integral polynomial in

4, dp,.> d,,
and is therefore an integer.
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Now let us suppose that ‘IT  is algebraic. Then irr is algebraic,? and
therefore the root of an equation

dx~+a,x+l+...+am = 0,
where TTZ  2 1, d,  d, ,..., d, are integers, and d # 0. If the roots of this
equation are

% 6J2>“.>  u,,
then 1 +ew = 1 +e””  = 0 for some o, and therefore

(l+eW,)(l+eW)...(l+eWm)  = 0 .

Multiplying this out,  we obtain
P - 1

(11.14.1)’ 1 +  2 eR,=O,
t=1

where

(11.14.2) % c$>..*>  9-l
are the 2m-1  numbers

il,“.,  w,, f-JJ1+wz,  q+%J.--,  w1+w2+...+%n

in some order.
Let us suppose that C-I of the 01  are zero and that the remaining

n  =  2m-l-(C-1)

are not zero; and that the non-zero a!  are arranged first, SO that (11.14.2)
reads

+.**>  a,, 0, 0,. . . , 0.

Then it is clear that any  symmetrical integral polynomial in

(11.14.3) dal,...,  aar,
is a symmetrical integral polynomial in

dal,...,  aor,,  0, o,..., 0,
i.e. in aorl, ao12,..., aorrel.
Hence any  such  function  is a symmetrical integral polynomial in

awl, hz,...,  au,,
and SO an integer.

We cari  Write  (11.14.1) as

(11.14.4) C+i e@  = 0.
t=1

We choose  a prime p such  that

(11.14.5) p > max@, C, Ianal...a,l)

t If o,L?2~+alz@-1+...+ a,, = 0 tmd  i = ix, then

a,y”-a,y”-*+...+qa,yJ--(+y-+...)  =  0

end 80 (a,yn-a,yn-*+...)*+(a,yn-1-a,yn-s+...)1  = 0.
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and define  4(z) by

176

(11.14.6) 4(z) = ‘ll~~~~~-‘{(z-o,)(a-a~)...(~-a,)/P.

Multiplying (11.14.4)  by 4(h), and using (lI.l3.3),  we obtain

(11.14.7) so+sl+s;  = 0,

where

(11.14.8) SO = C$(h),

(11.14.9)

Now I$(x) = zp-l  2 g,&,
(P-l)! z=o

where gl  is a symmetric integral polynomial in the numbers (11.14.3),
and SO an integer. It follows from Theorem 203 that 4(h) is an integer,
and that

(11.14.11) 4(h)  5 go  = (-l)%~-1(dctl,da2.  . . . .da,)p (modp).

Hence SO  is an integer; and

(11.14.12) SO = Cg,  + 0 (modp),
because of (11.14.5).

Next, by substitution and rearrangement, we see that

where fz,t = fz(dq; dal,  d+p..,  dg-1,  dq+l,...,  dol,)
is an integral polynomial in the numbers (11.14.3),  symmetrical in a11
but dal. Hence

z&9+4  = &n~14+
z=o

where 4 =z$lf,,, =z$lfz(dazi  dq,...>  &-l,  4+1,-v  d4.

It follows that .Z$  is an integral polynomial symmetrical in a11 the num-
bers (11.14.3),  and SO an integer. Hence, by Theorem 203,
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is an integer, and

(11.14.13) S, = 0 (modp).

From (11.14.12) and (11.14.13) it follows that X,+X,  is an integer
not divisible by p, and SO that

(11.14.14) lSo+4l  3 1.
On the other hand,

for any  fixed x, when p -+  00.  It follows that

(11.14.15) 1%  < :
for sufficiently large p. The three formulae (11.14.7),  (11.14.14),  and
(11.14.15) are in contradiction, and therefore r is transcendental.

In particular v is not a ‘Euclidean’ number in the sense of 9 11.5;
and therefore it is impossible to construct,  by Euclidean methods, a
length equal to the circumference of a circle  of unit diameter.

It may  be proved by the methods of this section that

ci1e~1+a2e~a+...+a,e@*  # 0

if the CY and /3  are algebraic, the 01  are not a11 zero, and no two j3  are
equal.

It has been proved more recently that ~US  is transcendental if 01  and ,6
are algebraic, 01  is not 0 or 1, and /3  is irrational. This shows in particular
that e-rr,  which is one  of the values of i2i,  is transcendental. It also
shows that

e - loi33
log 2

is transcendental, since  SS  = 3 and 0 is irrationa1.t

NOTES ON CHAPTER XI
$ 11.3. Dirichlet’s argument depends  upon the principle  ‘if there are m+ 1

abjects  in n boxes, there must be at least ono  box which contains  two (or more)
of the abjects’  (the Schu@chpr&zip  of German writers). That in 5 11.12 is
essentially the same.

$§  11.6-7. A full account  of Cantor’s work in the theory of aggregates (Mengen-
lehre)  Will  be found in Bobson’s Theory of fuactims  of a real variable, i.

Liouville’s work was published in the Jour&  de Math. (1) 16 (1851),  133-42,
over  t*wenty  years before Cantor’s. See also the note on @ 11.13-14.

Theorem 191 has been improved successively by Thue, Siegel, Dyson, and
Gelfond.  Finally Roth (Mathemtika,  2 (1955),  l-20) showed that no irrational
algebraic number is approximable to any  order greater than 2.

t Se.3  § 4.7.
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§f 11.8-9. Theorems 193 and 194 are due to Hurwitz, Math. Ann. 39 (1891),
279-84; and Theorem 195 to Borel, Journal de Math. (5),  9 (1903),  329-75. Our
proofs follow Perron (Kettenbrüche,  49-52, and Irrationakahlen,  129-31).

$ 11.10. The theorem with 2212  is also due to Hurwitz, 1.~.  supra. For fuller
information see Koksma, 29 et seq.

Theorems 196 and 197 were proved by Borel, Rendiconti del circolo  mat.  di
Palerme,  27 (1909),  247-71, and F. Bernstein, Math. Ann. 71 (1912),  417-39.
For further refinements see Khintchine, Compositio  Math. 1 (1934),  361-83, and
Dyson, Journal London Math. Soc. 18 (1943),  40-43.

§,ll.ll.  For Theorem 199 see Khintchine, Math. Ann. 92 (1924),  115-25.
$ 11.12. We lost nothing by supposing p/q  irreducible  throughout $5  11.1-l 1.

Suppose, for example, that p/q  is a reducible solution of (11.1.1). Then if
(p,  q) = d > 1, and we Write  p = dp’, q = dq’, we  have (p’, q’) = 1  ad

SO that p’/q’  is an irreducible solution of (11.1.1).
This sort of reduction  is no longer possible when we require  a number of rational

fractions with the same  denominator, and some of our  conclusions here would
become false  if we insisted on irreducibility. For example, in order that the
system (11.12.1) should have an infinity of solutions, it would be necessary, after
3 11.1 (l),  that every ti should be irrational.

We owe this remark to Dr. Wylie.
$5  11.13-14. The transcendence  of e was  proved first by Hermite, Comptes

rendus, 77 (1873),  18-24, etc. (QZuwres,  iii. 150-81); and that of r by F. Lindemann,
Math. Ann. 20 (1882),  213-25. The proofs were afterwards modified and iimpli-
fied by Hilbert,  Hurwitz,  and other writers. The form in which we give them is in
essentials  the same  as that in Landau, Vorlesungen,  iii. 90-95, or Perron, Irrational-
zahlen, 174-82.

The problem of  proving the transcendentality of  cro,  under the conditions stated
at the end of 5 11.14, was propounded by Hilbert in 1900, and solved inde-
pendently by Gelfond  tind  Schneider, by different methods, in 1934. Fuller
details, and references  to the proofs of the transcendentality of the other numbers
mentioned at the end of $ 11.7, Will  be found in Koksma, ch. iv.

0681



XII

THE FUNDAMENTAL THEOREM OF ARITHMETIC
IN k(l), k(i), AND k(p)

12.1. Algebraic numbers and integers. In this chapter we con-
sider some simple generalizations of the notion of an integer.

We defined an algebraic number in 3 11.5; .$  is an algebraic number
if it is a root of an equation

c,p+c,p’+...+c,  = 0 (cil f 0)
whose coefficients are rational integers.t  If

cg= 1,

then f is said to be an algebraic integer. This is the natural detinition,
since a rational .$  = a/b satisfies bf-a = 0, and is an integer when
b= 1.

Thus i = J(-1)
and
(12.1.1) p = ef ni  = 4(-l+d3)
are algebraic integers, since

i2+1=0
and p2+p+1  = 0.

When n = 2, 5 is said to be a quadratic  number, or integer, as the
case may  be.

These definitions enable us to restate  Theorem 45 in the form
THEOREM 206. An algebraic integer, if rationul, is a rational integer.

12.2. The rational integers, the Gaussian integers, and the
integers of k(p). For the present we shall be concerned  only with
the three simplest classes of algebraic integers.

(1) The rational integers (defined in 9 1.1) are the algebraic integers
for which n = 1. For reasons which Will  appear later,  we shall cal1  the
rational integers the integers of k( l).$

(2) The complex or ‘Gaussian’ integers are the numbers
5 = a+bi,

t We defined the ‘rational integers’ in 5 1.1. Since  then we  bave described them simply
as the ‘integers’, but now it becomes important to distinguish them explicitly from
integers of other kinds.

$ We shall define  k(B) generdly  in § 14.1. k( 1) is in fact the class  of rationals ; we  shall
not use a special symbol for the sub-class  of rational integers. k(i) is the clans  of numbers
r+si,  where  r and s are rational; and k(p) is defined similarly.
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where a and b are rational integers. Since

t2-2af+a2+b2 = 0,

a Gaussian integer is a quadratic integer. We cal1  the Gaussian integers
the integers of k(i). In particular, any rational integer is a Gaussian
integer.

Since (a+bi)+(c+di)  = (a+c)+(b+d)i,

(a+bi)(c+di)  = ac-bd+(ad+bc)i,
sums and produc& of Gaussian integers are Gaussian integers. More
generally, if 01,  /3  ,..., K are Gaussian integers, and

5 = P(%/L.>~)>
where P is a polynomial whose coefficients are rational or Gaussian
integers, then 5 is a Gaussian integer.

(3) If p is defined by (12.1.1),  then
p2 = edni  = 9(-1-id3),

p+p2 = -1, pp2  = 1.

I f 5 = a+bp,
where a and b are rational integers, then

(f-a-bp)(&u-bp2) = 0
or [2-(2u-b)[+u2-ub+b2  = 0,
SO that f is a quaclratic integer. We cal1  the numbers [ the integers of
k(p). Since

p2+p+1  = 0, u+bp  = u-b-b@=, a+bp2 = a-b-bp,
we might equally have defined the integers of k(p) as the numbers
u+bp2.

The properties of the integers of k(i) and k(p) resemble in many  ways
those of the rational integers. Our abject in this chapter is to study the
simplest properties common to the three classes of numbers, and in
particular the property of ‘unique factorization’. This study is im-
portant for two reasons, first because it is interesting to see how far
the properties of ordinary integers are susceptible to generalization, and
secondly because many  properties of the rational integers themselves
follow most simply and most naturally from those of wider classes,

We shall use small latin letters a, b,..., as we have usually done, to
denote rational integers, except that i Will  always be 2/(-l).  Integers
of k(i) or k(p) will be denoted by Greek letters a, /3,...  .

12.3. Euclid’s algorithm. We have already proved the ‘funda-
mental theorem of arithmetic’, for the rational integers, by two different
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methods, in $$  2.10 and 2.11. We shall now give a third proof  which is
important both logically and historically and Will  serve us as a mode1
when extending it to other classes of numbers.t

Suppose that a>b>O.

Dividing a by b we obtain a = q1 b fr,,

where 0 < rl  < b. If r1 # 0, we cari  repeat the process, and obtain

b = q2rl+r2,
where 0 < r2 < rl.  If r2 # 0,

rl  = q3r2+r3,
where 0 < r3 < r,;  and SO on. The non-negative integers b, rl,  r2,...,
form a decreasing sequence,  and SO

r - 0n+1 -

for some n. The las6  two steps of the process Will  be

rn-2  = qnrn-l+rn (0 < rn < m-A

rnyl  = qn+cn.
This system of equations for rl,  r2,...  is known as Euclid’s algorithm.
It is the same,  except for notation, as that of $ 10.6.

Euclid’s algorithm embodies the ordinary process for finding  the
highest common divisor of a and b, as is shown by the next theorem.

THEOREM 207: rn = (a, b).

Let d = (a, b). Then, using the successive steps of the algorithm, we
have cila. dlb  -+ dlr,  + d[r,  + . . . + dlr,,
SO that cl  < rn. Again,  working backwards,

rnlrn-l  + rlLIrn.+  + rnlrn-3  + . . . + r,lb  + r,ja.
Hence  rn divides both a and b. Since  d is the greatest of the common
divisors of a and b, it follows that rn  < d, and therefore that r,  = d.

12.4. Application of Euclid’s algorithm, to the fundamental
theorem in k(1). We base the proof  of the fundamental theorem
on two preliminary theorems. The first is merely a repetition of
Theorem 26, but it is convenient to restate  it and deduce it from the
algorithm. The second is substantially equivalent to Theorem 3.

T H E O R E M  208 . 1jf  1 a, f 1 b, then f 1 (a, b).

t The fundamental ides of the proof  is the same  aa  that of the proof  of 5 2.10: the
numbers divisible by d = (a, b)  form a ‘modulus’. But here we  determine d by a direct
construction.
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For flu  -flb +flr1+flrz  + ***  +flrw
0rfl d.

THEOREM 209. 1’ (a, b) = 1 and b 1 UC, then b 1 c.
If we multiply each  line of the algorithm by c, we obtain

UC  = qlbc+r,c,
. . . . . .

rn-2  c = qn  rn-1  cfr,  c,

T?a-1c = Qn+lrnC,

which is the algorithm we should have obtained if we started with UC

and bc instead of a and b. Here
r,  = (a, b) = 1

and SO (UC, bc) = r,c  = c.
Now b 1 UC, by hypothesis, and b 1 bc. Hence, by Theorem 208,

b 1 (UC, bc) = c,

which is what we had to prove.
If p is  a prime, then either p 1 a or (a,~) = 1. In the latter case,

by Theorem 209, p 1 UC implies p 1 c. Thus p [ UC implies p 1 a or p 1 c.
This is Theorem 3, and from Theorem 3 the fundamental theorem
follows as in Q 1.3.

It Will  be useful to restate  the fundamental theorem in a slightly
different form which extends more naturally to the integers of k(i) and
k(p). We cal1 the numbers E= +1,

the divisors of 1, the unities of k(l). The two numbers
rm

we cal1  associates. Finally we define  a prime as an integer of k(  1) which
is not 0 or a unity  and is not divisible by any  number except the unities
and its associates. The primes are then

-t2,  f3, &5,...,
and the fundamental theorem takes the form : uny  integer n of k( l), not
0 or a unity,  cari  be expressed as a product  of primes, und the expression
is unique except in regard to (a) the order  of the fuctors, (b) the presence
of unities us fuctors, und (c) ambiguities between ussociuted primes.

12.5. Historical remarks on Euclid’s algorithm and the funda-
mental theorem. Euclid’s algorithm is explained at length in Book vii
of the Elements (Props. l-3). Euclid deduces from the algorithm, effec-
tively, that flu .f  lb + f l(a>b)
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ad (uc,bc)  = (a,b)c.

He has thus the weapons which were essential in our proof.
The actual  theorem which he proves (vii. 24) is ‘if two numbers be

prime to any  number, their product also Will  be prime to the same’; i.e.

(12.5.1) (a, c) = 1 . (b,c)  = 1 -+ (ab,c)  = 1.

Our Theorem 3 follows from this by taking c a prime p, and we cari
prove (12.5.1) by a slight change in the argument of Q 12.4. But Euclid’s
method of proof,  which depends on the notions of ‘parts’ and ‘propor-
tien’ , is essentially diff erent .

It might seem strange at first that Euclid, having gone  SO far, could
not prove the fundamental theorem itself; but this view would rest
on a misconception. Euclid had no forma1 calculus  of multiplication
and exponentiation, and it would have been most difficult  for him even
to state the theorem. He had not even a term  for the product of more
than three factors. The omission of the fundamental theorem is in no
way casual  or accidental; Euclid knew very well that the theory of
numbers turned upon his algorithm, and drew from it a11 the return  he
could.

12.6. Properties of the Gaussian integers. Throughout this and
the next two sections the word ‘integer’ means  Gaussian integer or
integer of k(i).

We define  ‘divisible’ and ‘diviser’ in k(i) in the same  way as in k(l);
an integer 5 is said to be divisible  by an integer 7, not 0, if there exists
an integer 5 such  that e = 115;
and 7 is then said to be a divisor of 5.  We express this by 7 15.  Since
1, -1, i, -i are all integers, any  5 has the eight ‘trivial’ divisors

1, 6,  -1, -8,  i,  i[, -i,  -if.

Divisibility has the obvious properties expressed by

aIB - ISIY  + aIY>
aIyl.  . . . . “IYn + ~lBlrl+***+Pnrn~

The integer E is said to be a unity  of k(i) if E 15 for every ( of k(i).
Alternatively, we may  define  a unity  as any  integer which is a divisor
of 1. The two definitions are equivalent,,  since  1 is a divisor of every
integer of the field, and

C[l.  118  + Elf.

The norm of an integer 5 is defined by

NC  = N(a+bi)  = a2+b2.
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If .$ is the conjugate  of 4,  then

NL=bz=  151”.
Since (a”+b2)(C2+d2)  = (ac-bd)2+(ad+bc)2,

N.$  has the properties

NfNv  = N(&), NtNq... = N(c&..).

THEOREM 210. The norm of a unity  is 1, and any  integer whose norm
is 1 is a unity.

If E is a unity,  t’hen  E 1 1. Hence 1 = ~7, and SO

l=NcNq,  NE]~,  NE=~.

On the other hand, if N(a+&)  = 1, we have
1 = a2+b2  = (a+bi)(a-bi), afbi  1 1,

and SO a+bi  is a unity.

THEOREM 211. The unities of k(i) are

c = i” (s = 0, 1,2,3).

The only solutions of a2+b2  = 1 are

a = &l,  b = 0; a=O, b=&l,

SO that the unities are fl, f i .
If E is any  unity,  then l .$ is said to be associated with 5. The associates

of 5 are
5,  it, 4, -if;

and the associates of 1 are the unities. It is clear that if 8 17  then
b1 I 7F2Y where Q, c2 are any  unities. Hence, if 71  is divisible by 5,  any
associate of 7 is divisible by any  associate of 5.

12.7. Primes in k(i). A prime is an integer, not 0 or a unity,
divisible only by numbers associated with itself or with 1. We  reserve
the letter 7r  for primes.i A prime 7 has no divisors except the eight
trivial divisors

1,  =, -1, -7r>  i, ix, 4, -i?T.

The associates of a prime are clearly also  primes.

THEOREM 212. An integer whose norm is a rational prime is a prime.

For suppose that Nt = p, and that E = qc.  Then

p = Ne  = NvN[.

Hence either NV  = 1 or N<  = 1, and either rl  or 5 is a unity;  and there-
fore e is a prime. Thus N(2+i) =:  5, and 2+i  is a prime.

t Thero  Will  bo  no danger of confusion with the ordinary  um of n.
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The converse theorem is not true; thus N3 = 3, but 3 is a prime.
For suppose that

3  =  (a+bi)(c+di).

‘khen 9 = (a2+b2)(c2+d2).

It is impossible that a2fb2 =  @+a2  =  3

(since  3 is not the sum of two squares), and therefore either a2+b2 = 1
or c2+d2  = 1, and either a+& or C+I%  is a unity.  It follows that 3
is a prime.

. A rational integer, prime in k(i), must be a rational prime; but not ,‘i
( all rational primes are prime in k(i). Thus ,//’

L 5  =  (2+9(2-i).

THEOREM 213. Any integer, not 0 or a unity,  is divisible by a prime.

If y is an integer, and not a prime, then

Y = %A> Na1  > 1, NA > 1, NY = N~lW%,
and SO 1 < Na1  < Ny.
If 01~  is not a prime, then

011 = a2t329 Na2  > 1, Ni32 > 1,
Na, = Na2  Np2, 1 < Nor,  < NC+

We may  continue this process SO long as 0~~  is not prime. Since
Ny, NCQ,  NOL$,...

is a decreasing sequence of positive rational integers, we must sooner
or later corne to a prime OL,; and if 01~  is the first prime in the sequence
y, 01~,  cl2  ,...,  then

Y = A% = 8182~2  = **- = Blt92l93"'/3~  %9
and SO 01~  j y.

THEOREM 214. Any integer, not 0 or a unity,  is a product  of primes.

If y is not 0 or a unity,  it is divisible by a prime rri.  Hence

Y  =  nlYl> NY1  < NY*

Either y1  is a unity  or

Y1 = T2Y23 NY, < NYI.
Continuing this process we obtain a decreasing sequence

NY, NY,, NY,,...,

of positive rational integers. Hence NY,’  = 1 for some r,  and y,,  is a
unity  E; and therefore

y = 7r~Tr2...3rr1E  = 7r1...7Tr-,n:,
where TT~  = TT,  E is an associate of T, and SO itself a prime.
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42.8. The fundamental theorem of arithmetic in Ic(i).  Theorem
214 shows that every y cari  be expressed in the form

y = 7r17T2...nr,
where every rr  is a prime. The fundamental theorem asserts that, apart
from trivial variations, this representation is unique.
T HEOREM 215  (T HE FUNDAMENTAL THEOREM FOR GAUSSIAN

INTEGERS).  The expression of an integer as a product  of primes is
unique, aparf  from the order  of the primes, the presence  of unities, and
ambiguities between associated  primes.

We use a process, analogous to Euclid’s algorithm, which depends
upon
THEOREM 216. Given any  two integers y, yl, of which y1  # 0, there is

an integer K such  that

Y = KYlfY2, NY, c NY,-

We  shall actually prove more than this, viz. that

NY,  < WY,,
but the essential point, on which the proof  of the fundamental theorem
depends,  is what is stated in the theorem. If c and c1 are positive rational
integers, and c1 # 0, there is a k such  that

c = kc1+c2> 0 < c2 < Cl.
It is on this that the construction of Euclid’s algorithm depends, and
Theorem 216 provides the basis for a similar construction in k(i).

Since  y1  # 0, we have

r = R-f-Si,
Y 1

where R and S are real; in fact R and S are rational, but this is irre-
levant. We cari  flnd  two rational integers x and y such  that

IR-XI  G 3, IS-Yl  < 2;
and then

X--(x+iy)i  = J(R-x)+i(S-y)1  = {(R-~)“+(S-Y)~}*  < A.

If we take K  =  #iy, Y2 = Y-KY13

we have ]Y-KY11  :< 2-“17’11,

and SO, squaring, NY,  =  N(Y-‘VI) < W Y , .

We  now apply Theorem 216 to obtain an analogue of Euclid’s
algorithm. If y and y1  are given, and y1  # 0, we have

Y =KYl+Y2  (NY2 < NY,)*
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If yZ  # 0, we have
Y1 = KlY2+Y3 WY2  < NY,),

ana SO on. Since NY,,  Ny,,...
is a clecreasing sequence  of non-negative rational integers, there must
be an n for which

NY,+,  = 0, Yn+1 = 0,

ad the last steps of the algorithm Will  be

Yn-2 = %-2Yn-l+Yn WY, < NY?&

Yn-l=Kn-lYn*

It now follows, as in the proof  of Theorem 207, that ‘yn is a common
divisor of y ancl  yl, ad that every common divisor of y ad y1  is a
diviser of Y~.

We have nothing at this stage corresponcling exactly to Theorem 207,
since we have not yet clefined  ‘highest common divisor’. If 5 is a common
clivisor of y and  yl,  ad every common clivisor of y ad y1  is a divisor
of 5,  we cal1 5 a highest common divisor of y ad yl,  and  Write  5 = (y, yJ.
Thus yn.  is a highest common diviser of y and  yl. The property of (y, y&
corresponcling to that proved  in Theorem 208 is thus absorbecl into its
definition.

The highest common divisor is not unique, since any associate of a
highest common diviser is also a highest common divisor. If 7 and  5
are each  highest common divisors, then, by the definition,

7) I 5, 5lrl7
ad SO 5 = 4% 17  = ec = @77, e+  = 1.
Hence  4 is a unity and 5 an associate of 7, and the highest common divisor
is unique except  for ambiguity between associates.

It Will  be noticecl that we defined the highest common clivisor of
two numbers of k(  1) differently, viz. as the greatest among the common
divisors, and provecl as a theorem that it possesses the property which
we take as our definition here. We might define  the highest common
divisors of two integers of k(i) as those whose norm is greatest, but
the definition which we bave adopted  lends itself more naturally to
generalization.

We now use the algorithm to prove the analogue of Theorem 209, viz.
THEOREM 217. If (y, yl) = 1 and y1  I/3y,  then y1  j p.
We multiply the algorithm throughout by /3  a& find that

(BY,PYl)  = PYW
Since (y, yJ = 1, yn  is a unity,  ad SO

@Y,PYl)  = P*
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Now y1  [/3y,  by hypothesis, and y1  113~~.  Hence, by the definition of the
highest common divisor,

r1l(hkw

or YlIB.
If 7 is prime, and (n,  y) = p, then p 17~  and p 1 y. Since p ) n,  either

(1) p is a unity,  and SO (n,  y) = 1,  or (2) p is an associate of n,  and SO

r 1 y. Hence, if we take y1  = n in Theorem 217, we obtain the analogue
of Euclid’s Theorem 3, viz.

THEOREM 218. 1f r 1 Pr,  then  v I,8  or n 1 y.
From this the fundamental theorem for k(i) follows by the argument

used for k(1) in $ 1.3.

12.9. The integers of k(p). We conclude this chapter with a more
summary discussion of the integers

5=Wbp
defined in $ 12.2. Throughout this section ‘integer’ means  ‘integer of
k(p)‘.

We define  divisor, unity,  associate, and prime in k(p) as in k(i); but
the norm  of tJ = a+bp is

N[ =  (a+bp)(a+hp2)  =  a2-ab+b2.
Since a2-abfb2  = (a-$b)2+Qb2,
N<  is positive except when .$  = 0.

Since la+bp12  = a2--ab+b2  = N(a+bp),
we have NaN/l  = N($I), NaN/3...  = N(&..),

as in k(i).
Theorems 210, 212, 213, and 214 remain true in k(p); and the proofs

are the same  except for the difference  in the form of the norm.
The unities are given by

a2-abfb2  = 1,

or (2a-b)2+3b2  =  4 .
The only solutions of this equation are
&,=&l,b=O;  a=O,b=&l;  a=l,b=l;  a=-l,b=-1:
SO that the unities are

fl, -tP,  f(l+P)

or fl, *p,  fP2.
Any number whose norm is a rational prime is a prime; thus l-p is

a prime, since  N( 1 -p) = 3. The converse is false; for example, 2 is a
prime. For if

2 = (a+b)(c++),
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t h e n 4  =  (a2-ab+b2)(c2-cd+d2).

H e n c e  e i t h e r  a+bp  o r  cfdp  i s  a  unity,  o r

a2-ab+b2  = f2, (2a-b)2+3b2  = -&8,

w h i c h  i s  i m p o s s i b l e .

T h e  f u n d a m e n t a l  t h e o r e m  i s  t r u e  i n  k ( p )  also,  a n d  depends  o n  a

t h e o r e m  v e r b a l l y  i d e n t i c a l  w i t h  T h e o r e m  2 1 6 .

T HEOREM  219. Given any  two integers  y ,  yl,  of  which y1  # 0 ,  t h e r e  i s

U n  i n t e g e r  K  Su&  that

Y = Kyl+y2, NY2 < NY,*
F o r

Y

Y 1

a+bp  (a++)(c+dp2)  ac+bd-~+(b-Wp  = R+Sp
- =  cfdp  =  (c+dp)(c+dpy  = c2-cd+d2

>

say.  W e  cari  find  t w o  r a t i o n a l  i n t e g e r s  x  a n d  y  such  t h a t

v-4 < 8,
a n d  t h e n

If-Yl  G 8,

;- (x+yp)  2=  (R-x)2-(&-x)(s-y)+(s-y)2  < Q.

H e n c e ,  i f  K  =  x+yp, y2  =  y-KyI,  w e  h a v e

NY, = N(Y-KY,)  < %NY~  -=c NY,.

T h e  f u n d a m e n t a l  t h e o r e m  f o r  k ( p )  f o l l o w s  f r o m  T h e o r e m  2 1 9  b y  t h e

a r g u m e n t  u s e d  i n  Q  1 2 . 8 .

THEOREM 220 [T HE FUNDAMENTALTHEOREM FOR k(p)]. The  expres-

s i o n  o f  a n  i n t e g e r  o f  k ( p )  a s  a  product  o f  p r i m e s  i s  u n i q u e ,  apart  front

t h e  o r d e r  o f  t h e  p r i m e s ,  t h e  presence  o f  unit ies ,  and awrbiguities  between

associated  primes .

W e  conclude  w i t h  a  f e w  t r i v i a l  p r o p o s i t i o n s  about  t h e  i n t e g e r s  o f

k ( p )  w h i c h  a r e  o f  n o  i n t r i n s i c  interest  b u t  Will  b e  r e q u i r e d  i n  C h .  X I I I .

THEOREM 221. X = 1 -p  is a prime.

T h i s  h a s  b e e n  p r o v e d  a l r e a d y .

T HEOREM 2 2 2 .  AU i n t e g e r s  o f  k ( p )  fa11  i n t o  t h r e e  c l a s s e s  (modA),

typi$ed  by  0 ,  1, and -  1.

T h e  d e f i n i t i o n s  o f  L+L  c o n g r u e n c e  t o  m o d u l u s  A,  a  r e s i d u e  (modX),  a n d

a  class  o f  r e s i d u e s  ( m o d  A),  a r e  t h e  same a s  i n  k (  1 ) .

I f  y  i s  any i n t e g e r  o f  k ( p ) ,  w e  h a v e

y  =  a+bp  =  a+b-bh  G afb ( m o d h ) .

S i n c e 3  =  (l-p)(l-p2),A/3; and since  CL + b  has  one o f  t h e  t h r e e  r e s i d u e s
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0, 1, ‘-1 (mod 3),  y has one  of the same  three residues (modX). These
residues are incongruent, since  neither Nl  = 1 nor N2 = 4 is divisible
by NA  = 3.

THEOREM  223. 3 is associated with X2.
For x2 = l-2p-p2 = -3p.
THEOREM 224. The numbers *(l-p), &( 1-p2),  fp(  1 -p)  are ail

assgciated  with A.
For

&I(l-p) = zth *(l-py  := Ffxp2, fP(l-P)  = HP.

N O T E S  O N  C H A F ’ T E R  X I I

$ 12.1. The Gaussian  integers were used first by Gauss in his researches on
biquadratic reciprocity. See in particular his memoirs entitled ‘Theoria resi-
duorum biquadraticorum’, Werke, ii. 67-148. Gauss (here and in his memoirs
on algebraic equations, Werke, iii. 3-64) was the fi& mathematician to use
complex numbers in a really confident and scientific way.

The numbers a + bp were introduced by Eisenstein and Jacobi  in their work on
cubic reciprocity. See Bachmann, Allgemneine Arithrnetik  der ZahlkGrper,  142.

5 12.5. We owe the substance of these romarks  to Prof. S. Bochner.
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SOME DIOPHANTINE EQUATIONS

13.1. Fermat’s last theorem. ‘Fermat’s last theorem’ asserts that
the equation
(13.1.1) xn+ yn  = 79,
where n is an integer grester than 2, has no integral solutions, except
the trivial solutions in which one  of the variables is 0. The theorem has
never been proved for a11 n, or even in an infinity of genuinely distinct
cases, but it is known to be true for 2 < n < 619. In this chapter we
shall be concerned only with the two simplest cases of the theorem, in
which n = 3 and n = 4. The case n = 4 is easy, and the case n = 3
provides an excellent illustration of the use of the ideas of Ch. XII.

13.2. The equation z2+y2  = z2. The equation (13.1.1) is soluble
when n = 2; the most familiar solutions are 3, 4, 5 and 5, 12, 13. We
dispose of this problem first.

It is plain that we may  suppose x, y, a positive without loss of
generality. Next dix. dly + dl.%
Hence, if x, y, z is a solution with (x, y) = d, then x = dz’, y = dy’,
z = dz’,  and xl,  y’, z’ is a solution with (x’, y’) = 1. We  may  therefore
suppose that (z, y) = 1, the general solution being a multiple of a
solution satisfying this condition. Finally

x G 1 (mod 2) . y ZE 1 (mod 2) + z2 G 2 (mod4),
which is impossible; SO that one  of x and y must be odd and the other
even.

It is therefore sufficient  for our purpose to prove the theorem which
follows.

THEOREM 225. The most  general solution of the eqmtion
(13.2.1) x2fy2  = 22,

satisfying the conditions
(13.2.2) x > 0,  y > 0, z > 0, (x, y) = 1, 2 Ix,
is
(13.2.3) x = 2ab, y = a2--b2, z = a2+b2 7
where a, b are integers of opposite parity and
(13.2.4)’ (a,b)  = 1, a>b>O.
There is a (1,l) correspondence  between different values of a, b and different
values of 2, y, 2.
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First, let us assume (13.2.1) and (13.2.2). Since 2 1 z and @,y)  = 1,
y and x are odd and (y,~)  = 1. Hence +(~--y) and $(.~+y)  are integral
and

By (13.2.1),

and the two factors on the right, being coprime,  must both be squares.

Hence z+Y  _ u2 =--Y
2 9 -  = b2,

2

where a > 0, b > 0, a > b, (a, b) = 1.

AIS0 afb GE u2+b2  =:  z G 1 (mod2),

and a and b are of opposite parity. Hence any solution of (13.2.1),
satisfying (13.2.2),  is of the form (13.2.3); and a and b are of opposite
parity and satisfy (13.2.4).

Next, let us assume that a and b are of opposite parity and satisfy
(13.2.4). Then

$+y2  = 4u2b2+(u2-b2)2 = (a2+b2)2  = .z2,
x > 0, y > 0, z > 0, 2 1 x.

If (x, y) = d, then d 1 z, and SO

dly = u2-b2, dlz  = u2+b2;
and therefore d 1 2u2,  d 1 2b2.  Since (a, b) = 1, d must be 1 or 2, and the
second alternative is excluded because y is odd. Hence (x, y) = 1.

Finally, if y and z are given, u2 and b2,  and consequently a and b, are
uniquely determined, SO that different values of x, y, and .z  correspond
to different values of a and b.

13.3. The equation x4+y4 = z4.  We now apply Theorem 225 to
the proof  of Fermat’s  theorem for 91 = 4. This is the only ‘easy’ case
of the theorem. Actually we prove rather more.

THEOREM 226. There are no positive integrul  solutions of
(13.3.1) x4+y4 = 22.

Suppose that u is the least number for which

(13.3.2) x4+y4 = u2 (x > 0, y > 0, u > 0)

has a solution, Then (x, y) = 1, for otherwise we cari  divide through
by (x, y)4  and SO replace u by a smaller number. Hence at least one  of
x and y, is odd, and

u2 = x4+y4 G 1 or 2 (mod4).
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Since ~2 E 2 (mod4) is impossible, u is odd, and just one  of x and y
is even.

If z, say,  is even’,  then, by Theorem 225,

x2  = 2ab > y2 = a2--02, u = a2+b2,

a > 0, b > 0, (a,b) = 1,

and a and b are of opposite parity. If a is even and b odd, then

y2  E -1 (mod4),

which is impossible; SO that a is odd and b even, say  b = 2~.

Next (ix)2 = UC (a, c) = 1;

and SO a = d2, c =f2, d > 0, f > 0, @,f)  = 1,
and d is odd. Hence

y2 = a2--b2  = d4-4f4,

(2f2)2$y2 = (d2)2,

and no two of 2f2, y, d2 have a common factor.
Applying Theorem 225 again,  we obtain

2f2  = 21m,  d2 = 12fm2, Z > 0, ‘rn  > 0, (Z,m)  = 1.

Since f2 = lm, (km)  = 1,
we have 1 = r2,  m = s2 (r > 0, s > O),

and SO r4+s4  = a*.

But d < 09  = a < a2 < a2+b2  = u,

and SO u is not the least number for which (13.3.2) is possible. This
contradiction proves the theorem.

The method of proof  which we have used, and which was invented
and applied to many  problems by Fermat,  is known as the ‘method of
descent  ’ . If a proposition P(n) is true for some positive integer n, there
is a smallest such  integer. If P(n), for any  positive n, implies P(n’) for
some  smaller positive n’, then there is no such  smallest integer; and
the contradiction shows that P(n) is false for every n.

13.4. The equation za+ya = 9. If Fermat’s theorem is true for
some n, it is true for any  multiple of 12,  since  xrn+yzn  = zrn  is

@+)“+(y”)” = (2)“.

The theorem is therefore true generally if it is true (a) when n = 4 (as
we have shown) and (6) when n is an odd prime. The only case of (6)
which we  cari  discuss here is the case n = 3.



1 3 . 4  (22%9)] SOME DIOPHAN'I'INE EQUATIONS 193

The natural method of attack, a,fter  Ch. XII, is to Write  Fermat’s
equation in the form

(z+Y)(x+PYM+P2Y)  = x3,
and consider the structure of the various factors in k(p).  As  in 9 13.3,
we prove rather more than Fermat’s theorem.

THEOREM 227. There are no soldions of

53+713+53  = 0 (5 # 0, 7 # 0, 5 # 0)
in integers of k(p). In particular, there are no solutions of

23+y3 ZZZ 23

in rational integers, except  the trivial solutions in which one  of x, y, z is 0.

In the proof  that follows, Greek letters denote integers in k(p), and
X is the prime l-p.? We may  plainly suppose that

(13.4.1) (rl,  5)  = (L5) = CE,  77)  = 1.
We base the proof  on four lemmas (Theorems 228-31).

THEOREM 228. If w is not divisiOle  by A, then
~3  3 fl (modX4).

Since  w is congruent to one  of 0, 1, -1, by Theorem 222, and A X w,
we have w z fl (modh).
We cari  therefore choose  01  = fw SO that

CY G 1 (modX), 01  = 1+/%.

T h e n -&(CC??  1) = 013-l = (Lx-l)(a-p)(a-p2)

= pwh+ 1 -pw+ 1 -P”I

= ~3B@+l)(fl-P2)>

since  l--p2  = A(  l+p)  = -hp2.  A~SO

p2 E 1 (modX),

SO that ,Q+l)(P-p2)  = I@+l)@-1)  Bonn.
But one  ofp, /3+1, /3-l is divisible by A, by Theorem 222; and SO

&(U~T~) z 0 (modX4)

or d e 51 (modh4).

THEOREM  229. If 53+q3+53  = 0, then one  of t,  77,  5 is divisible by h.

Let us suppose the contrary. Then
0 = (3+~3+53  s ,kl*lfl  (modh4),

and so & 1 z 0 or f3 E 0, i.e. X4  1 1 or A4  13. The first hypothesis is

t See Theorem 221.

5591 0
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untenable because h is not a unity;  and the second because 3 is an
associate of X2t  and therefore not divisible by X4. Hence one  of .$,  7, 5
must be divisible by A.

We may  therefore suppose that X 15,  and that

5 = Any,
where h J y. Then A 18, A ,/  7, by (13.4.1), and we have to prove the im-
possibility of
(13.4.2) p+7)3+iPy3  = 0,

where

(13.4.3) E>d  = 1,  n  z 1, hXt*  hll%  A/rr-
It is convenient to prove more, viz. that

(13.4.4) p+7f+&Py3  = 0

cannot  be satisfied by any  .$,  7, y subject to (13.4.3) and any unity l .

THEOREM 230. 1f 5, r),  and  y satisfy  (13.4.3) and (13.4.4),  then  n > 2.
By Theorem 228,

-d3ny3  = t3+q3 s +lfl  (modh4).

If the signs are the same,  then

-d3ny3  G *2 (modX4),

which is impossible because A,./  2. Hence the signs are opposite, and
---CA~~~~  E 0 (modh4).

Since AJy,  n > 2.
THEOREM 23 1. If (13.4.4) is possible for n = m > 1, then it is possible

for n = m-l.

Théorem 231 represents the critical stage in the proof  of Theorem 227;
when it is proved, Theorem 227 follows immediately. For if (13.4.4) is
possible for any  n, it is possible for n = 1, in contradiction to Theorem
230. The argument is another example of the ‘method of descent’.

Our hypothesis is that

(13.4.5) -,X3mY3  = (5f?7)(6SP~)(5fP2'1).
The differences of the facto& on the right are

A PA P2h

a11  associates of VX. Each of them is divisible by X but not by A2  (since
AXrlL

Since m 3  2, 3m > 3, and one  of the three factors must be divisible
by h2.  The other two factors must be divisible by X (since the differences

t T h e o r e m  2 2 3 .
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are divisible), but not by A2  (since the differences are not). We may
suppose that the factor divisible by A2  is t+v;  if it were one  of the other
factors, we could replace 7 by one  of its associates. We have then

(13.4.6) [+y = h3m-2/c1, t+Pq  = &> t+P2’l = A’$,
where none  of K1,  K2,  Kg  is divisible by’  A.

If 6 IK~  and 6 1 K2, then 6 also  divides

K2-K3  = Pr]

and ,“K3-P2K2  = Pt,
and therefore both 4 and 7. Hence 6 is a unity and (K2,K3) = 1.
Similarly (K2,  K1) = 1 and (K1,  K2)  = 1.

Substituting from (13.4.6) into (13.4.5),  we obtain

-Ey3 = K1K2K3.

Hence each  of K~, K~, ~2 is an associate of a cube, SO that
.$+  7l  = X3”-2~,  = cl h3m-283, &tP?  = E2+3, t+p2rl  = E3V3,

where 0, 4, # have no common factor and  are not divisible by A, and
Es,  l 2, l a are unities. It follows that

0 = (l+P+P2M+rl)  = 5-l-?l+P(~+P~)+P2k+p2rl)

ZZZ r,~3m-2e3+E2ph~3+E3p2X~3;
and SO that

(13.4.7) p+E4*3+E5X3m-3e3  = 0,

where cp  = E~PIE~  and cg = EJE~P  are also  unities.
New m > 2 and SO

43+~4t,b3 E 0 (modh2)

(in fact,  mod P). But X ,J  C#  and h ,/’  t,L,  and therefore, by Theorem 228,

4” E fl (modh2), t,b3  E f 1 (mod h2)

(in fact,  modh*).  Henae

flf~~ G 0 (modX2).

Here z4 is & 1, fp, or &p2. But none  of

zt1ztP, flr!cP2

is divisible by X2, since each  is an associate of 1 or of A; and therefore
c* =  f l .

If c4 = 1, (13.4.7) is an equation of the type required. If c4 = -1,
we replace # by -I,!J.  In either case we have proved Theorem 231 and
therefore Theorem 227.
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13.5. The equation x3+y3  = 32 3. Almost the same  reasoning Will
prove

THEOREM 232. The equution
x3+y3  = 323

has no solutions in integers, except  the trivial solutions in which z = 0.
The proof  is, as might be expected, substantially the same  as that

of Theorem 227, since 3 is an associate of X2. We again  prove more, viz.
that there are no solutions of
(13.5.1) p+~3+EP+2y3  = 0,
where ((9 ‘I) = 1, AXYt
in integers of k(p). And again  we prove the theorem by proving two
propositions, viz.

(a) if there is a solution, then n > 0;
(b) if there is a solution for n = m > 1, then there is a solution for

n = m-l;
which are contradictory if there is a solution for any  n.

We  have k+-77)(E+P~)(E+P211)  = -,X3m+2Y3.
Hence at least  one  factor on the left, and therefore every factor, is
divisible by X; and hence  m > 0. It then follows that 3m+2  > 3 and
that one  factor is divisible by h2,  and (as in 9 13.4) only one. We have
therefore

(+7j = hamK1, f+P?7  = kt> t+P2q = AK3>

the K being coprime  in pairs and not divisible by h.
Hence, as in 9 13.4, -Ey3 = K1KZK3,

and K1, K2,  K3  are the associates of cubes, SO that

t+y  = +3me3, <+PI = E2W3, 5fP2T  = c3Q3*

It then follows that

0 = ~+~+~(~+~~)+~2(~+~2rl)  = E1X3me3+E2pX~3+~3p2X~3,
p+E4p+E5tv+le3  = 0;

and the remainder of the proof  is the same  as that of Theorem 227.
It is not possible to prove in this way that

(13.5.2) ~3+7)3+~P+lp  # 0.

In fact 13+23+9(-1)3 = 0
and, since 9 = pX4,t this equation is of the form (13.5.2). The reader
will  find it instructive to attempt the proof  and observe where it fails.

t See the proof  of Theorem 223.
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13.6. The expression of a rational as a sum of rational cubes.
Theorem 232 has a very interesting application to the ‘additive’ theory
of numbers.

The typical problem of this theory is as follows. Suppose that x
denotes an arbitrary member of ;L  specified class of numbers, such  as
the class of positive integers or the class of rationals, and y is a member
of some sub-class  of the former class, such  as the class of integral squares
or rational cubes. 1s  it possible to express x in the form

x = Y1+Y2+--+Yk;
and, if SO, how economically, that is to say  with how small a value of Iî?

For example, suppose x a positive integer and y an integral square.
Lagrange’s Theorem 369t shows that every positive integer is the sum
of four squares, SO that we may  take k = 4. Since  7,  for example, is
not a sum of three squares, the vadue  4 of k is the least possible or the
‘correct’ one.

Here we shall suppose that x is a,  positive rational, and y a non-negative
rational cube, and we shall show that the ‘correct’ value of k is 3.

In the first place we have, as a corollary of Theorem 232,

THEOREM 233. There are positive rationals which are not sums of two
non-negatice rational cubes.

For example, 3 is such  a rational. For

a3  c3

0 0
& tz =3

involves (ad)3+(bc)3  = 3(bd)3,

in contradiction to Theorem 232.j
In order to show that 3 is an admissible value of E, we require another

theorem of a more elementary character.

THEOREM 234. Any positive rational is the sum of three positive rational
cubes.

We have to solve

(13.6.1) r = x”+y3+z3,

where r is given, with positive rational x, y, z. It is easily verified that

x3+y3+x3  = (x+Y+~)3-3(Y+a~+x)(x+Y)
t Proved in various  wqts in Ch. XX.
$ Theorem 227 shows that 1 is not the sum  of two positive rational cubes, but it is of

course expressible as 03+  la.
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and SO (13.6.1) is equivalent to

[Chap. XIII

(x+Y+~)3-3(Y+z)(~+d(xsY)  = T.

If we Write  X = y+.~,  Y = z+x,  Z .= x+y,  this becomes

(13.62) (X+Y+Z)3-24XYZ  = Sr.

If we put

(13.6.3) x+2 Yu = - ,
z

v = ->
e

(13.6.2) becomes

(13.6.4) @A+U)~-24v(u- 1) = 8~2--~.

Next we restrict Z and v to satisfy

(13.6.5) r = 3.23v,

SO that (13.6.4) reduces to

(13.6.6) (u+v)”  = 24uv.

TO salve  (13.6.6),  we put u = ett  and find that

(13.6.7).
24t2 24t

u=(tf1)3’ v=(t+1)3*

This is a solution of (13.6.6) for every rational t.  We  have still  to satisfy
(13.6.5),  which now becomes

r(t+l)3  = 722%.

If we put t = r/(72w3),  where w is any  rational number, we have
Z = w(t+l).  Hence  a solution of (13.6.2) is

(13.6.8) x  =  ( u -  l)Z, Y  =  vz, 2 = w(t+l),

where u, v are given by (13.6.7) with t = r~-~/72. We  deduce the  solu-
tion of (13.6.1) by using

(13.6.9) 2x = Y+Z-x,  2y = 2+X--Y, 22 = x+Y-2.

TO complete the proof  of Theorem 234, we have to show that we cari
choose w SO that x, y, 2: are a11  positive. If w is taken positive, then t and
2 are positive. Now, by (13.6.8) and (13.6.9) we have

2x
- =  v f l - ( u - l )  =  2+v-u, 2Y 22
z

- =  u - v ,
z

- =  u + v - 2 .
z

These are a11 positive provided that

u>v u-v < 2 < u+v,

that is t > 1, 12t(t-1)  < (t+1)3 < 12t(t+l).
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These are certainly true if t is a lit& greater than 1,  and we may  choose w
SO that

t=.L
72w3

satisfies this requirement. (In fa&,  it is enough if 1 < t < 2.)
Suppose for example that r = 6.  If we put w = Q SO that t = 2, we

have 8 = (g-k ($3f(f)3.

The equation 1 = (3)3-l-(g)3+ (fJ3,
which is equivalent to

(13.6.10) 63 = 33+43+53,

is even simpler, but is not obtainable by this method.

13.7. The equation z3+y3+z3  = t3.  There are a number of other
Diophantine equations which it would be natural to consider here; and
the most interesting are

(13.7.1) 23+y3-+,$ = t3

and

(13.7.2) 23fy3  q = u3+v3.

The second equation is derived from the first by writing -u,  v for z, t.
Each of the equations gives rise  to a number of different problems,

since  we may  look for solutions in (a) integers or (b) rationals, and we
may  or may  not be interested in the signs of the solutions. The simple&
problem (and the only one  which has been solved completely) is that
of the solution of the equations in positive or negative rationals. For
this problem, the equations are equivalent, and we take the form
( 13.7.2). The complete solution was found by Euler and simplified by
Binet.

If we put
II:  =  X -Y , y  =  x+y,  u  =  u - v ,  v  = u+v,

(13.7.2) becomes

(13.7.3) x(x2+3Y2) q = U(  u2+3v‘q.

We suppose that X and Y are not both 0. We may  then write

USVd(-3) = a+bt(-3), u-q-3)
X+YJ(-3) x-Y.J(-3)

= a-bJ(-3),

where a, b are rational. From the first of these

(13.7.4) U  = aX-3bY, V = bX+aY,

while (13,7.3)  becomes X  =  7J(a2+3b2).
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This last, combined with the first of (13.7.4),  gives us

cx = dY,

where c = a(a2+3b2)-1, d = 3b(a2f3b2).

If c = d = 0, then b = 0, a = 1, X = U,  Y = Y. Otherwise

(13.7.5) X = Ad = 3Xb(u2+3b2), Y = Xc = X{u(u2+3b2)-  l},

where X # 0. Using these in (13.7.4),  we find that

(13.7.6) U  = 3hb, V = X{(a2+3b2)2-.).
Hence, apart  from the two trivial solutions

x=y=u=o; x = u, Y = v,

every rational solution of (13.7.3) takes the form given in (13.7.5) and
(13.7.6) for appropriate rational A, a, b.

Conversely, if A, a, b are any  rational numbers and X, Y, U,  V are
de$ned  by (13.7.5) and (13.7.6),  the formulae (13.7.4) follow at once
and

U(U2+3V2) = 3hb{(uX-3bY)2+3(bX+aY)2}

= 3Xb(u2+3b2)(X2+3Y2) = X(X2+3Y2).
We have thus proved

THEOREM 235. Apurt from  the trivial solutions

(13.7.7) x=y=o, u = - v ; 2 = u, y = v,

the generul  ration&  solution of (13.7.2) is given by

(13.7.8)
(

x = h{l-(a-3b)(u2+3b2)}, y = A{(u+3b)(u2+3b2)-l),
u = X{(u+3b)-(u2+3b2)2}, v = h{(u2+3b2)2-(u-3b)},

where A, a, b are any  rational numbers except  that h # 0.

The problem of finding  a11 integral solutions of (13.7.2) is more diffi-
cuit.  Integral values of a, b and X in (13.7.8) give an integral solution,
but there is no converse correspondence. The simplest solution of
(13.7.2) in positive integers is

(13.7.9) x = 1, y = 12, u = 9, V= 10
corresponding to

Q,  = 10 b zz -& x = -y;
lQ>

On the other hand, if we put a = b = 1, X = $, we have

x = 3 ,  y=5, u=-4,  v=6,

equivalent to (13.6.12).
Other simple solutions of (13.7.1) or (13.7.2) are

13+63+83  = g3, 23+343  = 153+333, 93+153  = 23+163.
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Ramanujan gave

x = 3a2+5ab-5b2, y = 4a2-4ab+6b2,

z = 5a2-5ab-3b2 > t = 6a2-4ab+4b2

201

as a solution of (13.7.1). If we take a = 2, b = 1, we obtain the solu-
tion (17, 14, 7, 20). If we take a == 1, b = -2, we obtain a solution
,equivalent  ‘to (13.7.9). Other similar solutions are recorded in Dick-
son’s History.

Much  less is known about the equation

(13.7.10) x4+  y4  =:  u4+ v4,

first solved by Euler. The simplest parametric solution known is

L

x = a’+a%-2a3b4+3a2b5+ab6,

(13.7.11)
y = aeb-3a5b2--2a4b3+a2b5+b7,
u = a7fa5b2-2a3b4-3a2b5$ab6,
v = a6b+3a5b2--2a4b3+a2b5+b7,

but this solution is not in any sense complete. When a = 1, b = 2 it
leads to 1334+1344  == 15s4+594,

and this is the smallest integral  solution of ( 13.T.  10).
TO solve (13.7.10),  we put

(13.7.12) x = aw+c,  y = bw-d, u = aw-j-d,  v = bw+c.

We thus obtain a quartic equation for w, in which the first and last
coefficients are zero. The coefficient of w3  Will  also  be zero if

c(a3-b3)  =: d(a3+b3),

in particular if c = a3+b3, d = as--.b3;  and. then, on dividing by w, we
find  that 3w(a2-b2)(c2-d2)  = 2(ad3--ac3+bc3+bd3).

Finally, when we substitute these values of c, d, and w,in (13.7.12),
and multiply throughout by 3a2b2,  we obtain (13.7.11).

We shall say  something more about problems of this kind in Ch. XXI.

NOTES ON CIIAPTER XIII
8 13.1. Al1  this chapter,  up  to § 13.5, is  modelled on Landau, Vorlesungen,  iii.

201-17.
The phrase ‘Diophantine equation’ is dorived from Diophantus of Alexandria

(about A.D. 250),  who was the first writer to make a systematic study of tho
solution of equations in integers. Diophantus proved the substance of Theorem
225. Particular solutions had been known to Greek mathematicians from
Pythagoras onwards. Heath’s Diophantus of Alexandria  (Cambridge, 1910)
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includes  translations of a11  the ext&nt  works of Diophantus, of Fermat’s com-
ments  on them, and of many solutions of Diophantine problems by Euler.

There is a very large literature about ‘Fermat’s last theorem’. In pkrticular
we may refer to Bachmann, Das  Fermatproblem;  Dickson, History,  ii, ch. xxvi;
Landau, Borlesungen,  iii; Mordell, Three lectures on.  Fermat’s la&  theorem (Cam-
bridge, 1921); Noguès, Théorème de Fermat,  son histoire (Paris, 1932); Vandiver,
Report qf  the committee on algebraic numbers, ii (Washington, 1928),  ch. ii, and
Amer. Math. Monthly,  53 (1946),  555-78.

The theorem was  enunciated by Fermat.  in 1637 in a marginal note in his copy
of Bachet’s edition  of the works of Diophantus. Here he asserts definitely that
he possessed a proof,  but the later  history of the subject seems to show that he
must bave been mistaken. A very large number of fallacious proofs have been
published.

In view of the remark at the beginning of 1 13.4, we cari suppose that n = p > 2.
Kummer (1850) proved the theorem for n = p, whenever the odd prime p is
‘regular’, i.e.  when p does  not divide the numerator of any of the numbers

B,,  %..> Qa-3)
where Bk is the kth Bernoulli number defined at the beginning of § 7.9. It  is known,
however, that there is an infinity of ‘irregular’ p. Various  criteria have been
developed (notably by Vandiver) for the truth of the theorem when p is irregular.
The corresponding calculations have been carried  out  on the high-speed computer
SWAC and as a result, the theorem is  now known to be true for a11  p < 4002.
See Lehmer, Lehmer and Vandiver, Proc.  Nat.  Acad.  Sci (U.S.A.) 40 (1954),
25-33 ; Vandiver, ibid. 732-5, and Selfridge, Nicol and Vandiver, ibid. 41 (1955),
970-3.

The problem is much  simplified if it is assumed that no one  of 2, y, z is divisible
by p. Wieferich proved in 1909 that there are no such  solutions unless 2”-’  E  1
(modp2),  which is true for p = 1093 (5  6.10) but for no other p less than 2000.
Later writers  have found further‘conditions,of the same  kind arid  by this means
it bas been shown that there are no solutions of this kind for p < 253,747,889.
See Rosser, Bulletin Amer. Math. Soc. 46 (1940),  299-304, and 47 (1941),  109-10,
and Lehmer and Lehmer, ibid. 47 (1941),  139-42.

$ 13.3. Theorem 226 was actually proved by Fermat. See Dickson, History,  ii,
ch. xxii.

$ 13.4. Theorem 227 was proved by Euler between 1753 and 1770. The proof
was  incomplete  at one  point, but the gap was  filled by Legendre. See Dickson,
History,  ii, ch. xxi.

Our proof follows  that given by Landau, but Landau presents it as a first
exercise  in the use of ideals, which we have to avoid.

$13.6. Theorem 234 is due to Richmond, Proc.  London Math. Soc. (2) 21 (1923),
401-9.  His proof is based on formulae  given much  earlier by Ryley [The Zadies’
diary  (1825),  351.

Ryley’s formulae have been reconsidered and generalized by Richmond [Proc.
Edinburgh Math. Soc. (2) 2 (1930),  92-100, and Journal London Math. Soc. 17
(1942),.  196-71  and Morde11 [Journul  London Math. Soc. 17 (1942),  194-s].  Rich-
mond finds solutions not included in Ryley’s; foi example,
3(1-t+t+  = s(l_ttS), 3(1-t+tz)y  = s(3t-l-tz), 3(1-t+t2)2  = s(3t-3t2),
where s is  rational and t = 3r/s3. Morde11 salves  the more general equation

(X+Y+Z)“-dXYZ  = m,
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of which (13.6.2) is a particular  case. Our presentation of the proof  is based on
Mordell’s. There are a number of other papers on cubic Diophantine equations in
three variables, by Morde11 and B. Segre, in later numbers of the Jowncd. See also
Mordell, A chapter  in the theory of nunzbers  (Cambridge 1947),  for an aocount  of
work on the equation y2 == z3  + k.

§ 13.7. The first results concerning ‘equal sums of two cubes’ were found by
Vieta  before 1591. See.Dickson, History,  ii. 550 et seq. Theorem 235 is due to
Euler. Our method follows that of Hurwitz, Math. Werke, 2 (1933), 469-70.

Euler’s solution of (13.7.10) is given in Dickson, Introduction, 6&62.  His
formulae, which are not quite SO simple as (13.7.11),  may be derived from the
latter by writing f +g and f-g for a and b and dividing by 2. The formulae
(13.7.11) themselves were first given by Gérardin, L’Intermc’diaire  des mathé-
maticiens, 24 (1917), 51. Thc simple  solution here is due to Swinnerton-Dyer,
Journal London Math. Soc. 18 (1943), 2-4.

Leech (Proc.  Cambridge Phil.  Soc. 53 (1957), 778-80) lists numerical solutions of
(13.7.2), of (13.7.10),  and of several other Diophantine equations.



XIV

QUADRATIC FIELDS (1)

14.1. Algebraic fields. In Ch. XII we considered the integers of
k(i) and k(p), but did not develop the theory farther than was necessary
for the purposes  of Ch. XIII. In t’his  and the next chapter we carry
our investigation of the integers of quadratic fields a little farther.

An algebraic field is the aggregate of a11 numbers

where 8 is a given algebraic number, P(8) and Q(6) are polynomials
in 8 with rational coefficients, and Q(9) # 0. We denote this field by
k(9). It is plain that sums and products of numbers of k(B)  belong to
k(6) and that a//3  belongs to k(B) if 01  and /3  belong to k(8) and p # 0.

In $ 11.5, we defined an algebraic number 5 as any root of an algebraic
equation

(14.1.1) a,xn+alxn-l+...+a,,  = 0,

where a,,, a,,... are rational integers, not a11 zero. If [ satisfies an
algebraic equation of degree n, but none  of lower degree, we say  that
f is of degree n.

If n = 1, then e is rational and k(t) is the aggregate of rationals.
Hence, for every rational [, k(f) denotes  the same  aggregate, the field
of rationals, which we denote by k(1). This field is part of every
algebraic field.

If n = 2, we say  that < is ‘quadratic’. Then 5 is a root of a quadratic
equation a,x2+alx+a2  = 0

and SO
a fbdm

5=7,

for some rational int’egers  a, b, c,  m. Without loss of generality, we may
take m to have no squared factor. It is then easily verified that the
field k(f) is the same  aggregate as k(4m). Hence it Will  be enough for
us to consider the quadratic fields k( 2im)  for every ‘quadratfrei’ rational
integer m, positive or negative (apart  from m = 1).

Any member 6 of k(4m)  has the form

t _ P(dm) t+uzim (t+uzlm)(v-wzim)  a+bdm
Q(4m)  - ~ = ~v-+wdm v2-w2m C
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for rational integers t,  u, v, w, a, b, c. We have (~~--a)2  = mb2,  and SO

f is a root of

(14.1.2) c2x2-2acx+a2-mb2  = 0.

Hence < is either rational or quadratic; i.e. every member of a quadratic
field is either a rational or a quadratic number.

The field k(dm includes  a sub-class  formed by a11 the algebraic in-)
tegers  of the field. In 5 12.1 we defined an algebraic integer as any root
of an equation

(14.1.3) xq-cc,x~-~+...+ci  = 0,

where cr,..., ci  are rational integers. We appear then t)o have a choice
in defining the integers of lc(dm).  We may  say  that a number .$  of
k(dm)  is an integer of k(dm)  (i) if 5 satisfies an equation of the form
(14.1.3) for some j,  or (ii) if 5 satisfies an equation of the form (14.1.3)
with j = 2. In the next section, however, we show that the set of
integers of k(dm)  is the same  whichever definition we use.

14.2. Algebraic numbers and integers; primitive polynomials.
We say  that the integral polynomial

(14.2.1) f(x) = a,x~+a,x”-l+...+a,

is a primitive polynomial if

ao > 0, (a,,  a,,..., a,) = 1

in the notation of p. 20. Under the same  conditions, we cal1 (14.1.1)
a primitive equution. The equation (14.1.3) is obviously primitive.

THEOREM 236. An algebraic number e of degree n satisjes a unique
primitive equation of degree 12.  If t is an algebraic integer, the coeficient
of xn  in this primitive equation is unity.

For n = 1, the first part is trivial; the second part is equivalent to
Theorem 206. Hence Theorem 236 is a generalization of Theorem 206.
We shall deduce Theorem 236 from

T HEOREM 237. Let 8 be an algebraic number of degree n and  let
f(x) = 0 be a primitive equation of degree n satis$ed  by 5.  Let g(x) = 0
be any  primitive equation satis$ed  by f. Then g(x) = f(x)h(x)  for some
primitive polynomial k(x)  and a11 x.

By the definition of .$  and n there must be at least one  polynomial
f(x) of degree n such  that f (6) = 0. We may  clearly suppose f(x)
primitive. Again  the degree of g(x) cannot  be less than n. Hence we
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cari  divide g(x) byf(x)  by means  of the division algorithm of elementary
algebra and obtain a quotient H(x) and a remainder K(x), such  that

(14.2.2) s(x)  = fWH(x)  +KW,
H(x) and K(x) are polynomials with rational coefficients, and K(x) is
of degree less than n.

If we put x = t in (14.2.2),  we have K(t)  = 0. But this is impossible,
since  .$  is of degree n, unless K(x) has a11 its coefficients zero. Hence

g(x)  = f(x)HW
If we multiply this throughout by an appropriate rational integer, we
obtain

(14.2.3) cg(x) = fww,
where c is a positive integer and h(x) is an integral polynomial. Let d be
the highest common divisor of the coefficients of h(x). Since  g is primi-
tive, we must have d [ c. Hence, if d > 1, we may  remove the factor  d;
that is, we may  take h(x) primitive in (14.2.3). Now suppose that p j c,
wherepisprime. It follows thatf(x)h(x) E 0 (modp)andso, by Theorem
104 (i), either f(x) G 0 or h(x) E 0 (modp). Both are impossible for
primitive f and h and SO c = 1. This is Theorem 237.

The proof  of Theorem 236 is now simple. If g(x) = 0 is a primitive
equation of degree n satisfied by 4,  then h(x) is a primitive polynomial
of degree 0; i.e. h(x) = 1 and g(x) = f(x) for a11 x. Hencef(x) is unique.

If t is an algebraic integer, then t satisfies an equation of the form
(14.1.3) for somej > n. We Write  g(x) for the left-hand aide of (14.1.3)
and, by Theorem 237, we have

g(x)  = fWW>
where h(x) is of degree j-n. If!(x) = a,~~+...  and h(x) = h,xi-n+  . . . .
we have 1 = a, h,, and SO a, = 1. This completes the proof  of
Theorem 236.

14.3. The general  quadratic field k(  2/m).  We now define  the integers
of 1(&n)  as those algebraic integers which belong to k(&n).  We use
‘integer’ throughout this chapter and Ch. XV for an integer of the
particular field in which we are working.

With the notation of 5 14.1, let
a+bzlm

5=T,

be an integer, where we may  suppose that c > 0 and (a, b, c) = 1.
If b = 0, then t = ait is rational, c = 1: and 4 = a, any  rational integer.
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If b # 0, 4 is quadratic. Hence, if we divide (14.1.2) through by cs,
we obtain a primitive equation whose leading coefficient is 1. Thus
c 12~  and c2 / (a2-mb2).  If d = (a,~),  we have

d2 1 u2, d2 1 c2, d2 1 (u2-mb2) + d2 1 mb2  -+ d 1 b,

since  m has no squared factor. But (a, b, c) = 1 and SO d = 1. Since
c I2u,  we have c = 1 or 2.

If c = 2, then a is odd and mb2  := u2 = 1 (mod4),  SO that b is odd
and m G 1 (mod4). We must therefore distinguish two cases.

(i) If m +z? 1 (mod4),. then c = 1 and the integers of k(dm) are

with rational integral a, b. In this case m E 2 or m E 3 (mod4).
(ii) If m E 1 (mod4),  one  integer of k(dm)  is T = $(dm-1) and a11

the integers cari  be expressed simply in térms  of this r.  If c = 2, we
have a and b odd and

gq& = +f+br = u,+(2b,+l)T,

where ur,  b,  are rational integers. If c = 1,

[ = a+bdm  = a+b+2br  = u,+2b,r,

where a,, b,  are rational integers. Hence, if we change our  notation
a little, the integers of k(llm)  are the numbers a+br with rational
integral a, b.

THEOREM 238. The integers of k(dm) are the numbers

u+bdm

when m E 2 or m EZ  3’ (mod 4),  und the numbers

u+bT  = u++b(dm-1)

when m G 1 (mod4),  a and b being in either case rationul  integers.

The field k(i) is an example of the first case and the field k{J(  - 3)) of
the second. In the latter case

and the field is the same  as k(p). If the integers of k(6) cari  be expressed
as a+W,
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where a and b run through the rational integers, then we say  that [l, $1
is a basis of the integers of k(6). Thus [l, i] is a basis of the integers of
k(i), and [l,p] of those of k(,/(-3)).

14.4. Unities and primes. The definitions of divisibility,  divisor,
unity,  and prime in k(dm)  are the same  as in k(i); thus 01  is divisible
by fi, or /l\ CL,  if there is an integer y of lc(dm)  such that cy  = /3y.i  Aunity
E is a divisor of 1, and of every integer of the field. In particular 1 and
-1 are unities. The numbers l E are the associates of 5,  and a prime is
a number divisible only by the unities and its associates.

THEOREM 239. 1j Q and Q are unities, then cl  c2 and CJG~  are unities.
There are a 6, and a 6, such  that E~S,  = 1, E~S,  = 1, and

E1~2s,s2  = 1 + E1E21  1.
Hence  elcZ  is a unity.  Also 6, = l/c2  is a unity;  and SO, combining
these results, l i/e, is a unity.

We  cal1 { = r-sdrn  the conjugate of t = r+siim. When m < 0, z is
also  the conjugate of .$  in the sense of analysis, 5 and f being conjugate
complex numbers; but when m > 0 the meaning is different.

The norm Nf  of 5 is defined by
N(  = .$z  = (r+dm)(r-szim)  = r2-ms2.

If t is an integer, then Nf  is a rational integer. If m G 2 or 3 (mod 4),
and E = a+b2/m,  then N.$  = a2-mb2;
and if m = 1 (mod4),  and 4 = a+bw,  then

Nt = (a-ib)2-gmb2.
Norms are positive in complex fields, but not necessarily in real fields.
In any  case N(&l)  = N<Nr].

THEOREM 240. The norm of a unity  is fi, and every number whose
norm is fl is a unity.

For (a) C(l  + Es= 1 +NcNS  = 1 + Ne = &l,
and (b) @=N..f=  fl + 511.

If m < 0, m = -CL,  then the equations
a2+p,b2  = 1 (m c 2,3  (mod 4)),

(a-+b)2+&b2  = 1 (m = 1 (mod 4))
have only a finite  number of solutions. This number is 4 in k(i), 6 in
k(p), and 2 otherwise, since

u= fl, b = O
are the only solutions when p > 3.

t If OL  and  /3  are  rational integers, then y is rational, and SO  a rational integer, SO  that
b  1 01  then msans  the same  in k(J(-m)}  as  in k(1).
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There are an infinity of unities in a real field, as we shall see in a
moment in k(lj2).

NE  may  be negative in a real field, but

ME  = INfI
is a positive integer, except when L = 0. Hence, repeating the argu-
ments of J 12.7, with M( in the place of N[  when the field is real, we
obtain

THEOREM 241. An integer whose ‘norm  is a rational  prime is prime.

THEOREM 242. An integer, not 0 or a unity,  cari  be expressed as a pro-
duct  of primes.

The question of the uniqueness of the expression remains open.

14.5. The unities of k(112).  When m = 2,
N.$  = a2-2b2

and a2-2b2  = - 1

has the solutions 1, 1 and - 1, 1. Hence

w  = lfd2, w-1  = -6 = -lf&

are unities. It follows, after Theorem 239, that a11 the numbers

(14.5.1) +J”, fw-”  (n = 0, 1,2,...)

are unities. There are unities, of either sign, as large or as small as
we please.

THEOREM 243. The numbers (14.5.1) are the only  unities of k(d2).

(i) We prove first that there is no unity  E between 1 and w. If there
were, we should  have

and

SO that

1 < xfyd2  = E < 1+112

x2-2y2 = fl;

-1 < x-y42 < 1,

0 < 2x < 2+212.

Hence x = 1 and 1 < 1 fyd2  < 1+ d2, which is impossible for in-
tegral y.

(ii) If E > 0, then either E = CP  or
OP  < E < cIIn+1

for some integral n. In the latter case W-“E is a unity,  by Theorem 239,
and lies between 1 and w. This contradicts (i); and therefore every
positive E is an CP.  Since  -E is a unity  if E is a unity,  this proves the
theorem.

6691 P
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Since  Nw  = - 1, Nu2  = 1,  we have proved incidentally

THEOREM 244. Al1 rationul  integral  solutions of
x2-2y2  = 1

are given  by xfyzi2 = j-(1+112)2”,

and a11 of 9-2y2=  -1

by x+y2/2 = f(l+2/2)2”+1,
with n a rational integer.

The equation x2-my2  = 1,

where m is positive and not a square, has always an infinity of solutions,
which may  be found  from the continued fraction for 2/m.  In this case

42=1+i  l
2f 2$-...’

the length of the period is 1, and the solution is particularly simple.
If the convergents are

33, 1 3 7
- -  =  -> -, ->...
qn 1 2 5

(n = 0, 1, 2,...)

then  pn,  qn,  and
4, = P,+qn  4% *, = p,-q?ld2

are solutions of x, = 2x,-1+x,-2.

From &,  = w, $1  = w2, l). = -w-l, a)1  = w-2,
and

un ZZZ  2w4+wn  -2, (-w)-,  = 2(-W)-n+l+(-W)-n+2,

it follows that 4, z gn+l, #, = (-w)-n-l

for a11 n. Hence
p, = i{,n+l +(-w)-n-l} = 4{(1+zi2)n+1+(1-4/2)“+1},

q, = g%‘n{clJ n+1-(--,)-n-l}  = ~zl2{(1+~2)~+‘-(1-~2)~+~},

and pi-2q;  = $,$,  = (-l)a+l.

The convergents of odd rank give solutions of x2-2y2  = 1 and those
of even rank solutions of x2-2y2  = - 1.

If x2-2y2  = 1 and xjy > 6, then
1o<;-J2=  l ~ 1

y(x+yd2)  < y. 2yzi2  < yz’
Hence, by Theorem 184, xly  is a convergent. The convergents also give
a11  the solutions of the other equation, but this is not quite  SO easy to
prove. In general, only some of the convergents to 4rn  yield unities of
k(iim).
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14.6. Fields in which the fundamental theorem is false. The
fundamental theorem of arithmetic is true in k(l), k(i), k(p), and
(though we have not yet proved SO) in k(&).  It is important to show by
examples, before proceeding farther, that it is not true in every k(4m).
The simplest examples are m = - 5 and (among real fields) m = 10.

*(i)  Since -5 3 3 (mod4),  the integers of k{,/(-5))  are a+b,/(-5).
It is easy to verify that the four numbers

2 ,  3 ,  1+&-5), l-&-5)
are prime. Thus

l+J(-5)  = (~+~J(-5)}{c+&/(-5))
implies 6 = (a2+5b2)(c2+5d2);

and a2+5b2  must be 2 or 3, if neither factor is a unity.  Since neither
2 nor 3 is of this form, l+ J(-5) is prime; and the other numbers may
be proved prime similarly. But

6 = 2.3 = {1+&5)}(1-2/(-5)}>

and 6 has two distinct decompositions into primes.
(ii) Since 10 E 2 (mod4),  the integers of k(iil0) are a+biilO.  In

this case 6 = 2.3 = (4+1110)(4-2110),

and it is again  easy to prove that a11 four factors are prime. Thus, for
example, 2 = (a+b1/10)(c+d1110)

implies 4 = (a2-  10b2)(c2-  10d2),

and a2-  lob2  must be 52,  if neither factor is a unity. This is impossible
because neither of &2  is a quadratic residue of 1O.t

The falsity of the fundamental theorem in these fields involves the
falsity of other theorems which are central in the arithmetic of k(1).
Thus, if a:  and /3  are integers of k(t), without a common factor, there
are integers h and p for which

ckA+p/.L  = 1.

-This  theorem is false in k{J(-5)).  Suppose, for example, that 01  and j3
are the primes 3 and l+J(-5).  Then

3{~+bJ(-5)}+(1+J(-5)}{c+dJ(-5))  ==  1
involves 3a+c-5d  = 1, 3b+c+d  =  0
and SO 3a-3b-6d-=  1,
which is impossible.

t l’, 2*,  3’, 4*,  5*.  6*,  7, Sa, 9’ G 1, 4, 9, 6, 5, 6, 9. 4, 1 (mod 10).
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14.7. Complex Euclidean fields. A simple field is a field in
which the fundamental theorem is true. The arithmetic of simple
fields follows the lines  of rational arithmetic, while in other cases a new
foundation is required. The problem of determining all simple fields is
very difficult,  and no complete solution has been found, though Heil-
bronn has proved that, when m is negative, the number of simple fields
is finite.

We  proved the fundamental theorem in k(i) and k(p) by establishing
an analogue of Euclid’s algorithm in k(1). Let us suppose, generally,
that the proposition

(E) ‘given integers y and yl, with y1  # 0, then there is an integer K  such
that

Y = KYlSY2, INY21  < WY11
is true in k(4m).  This is what we proved, for k(i) and k(p), in Theorems
216 and 219; but we have replaced Ny by INy]  in order to include  real
fields. In these circumstances we say  that there is a Euclidean algorithm
in k(iim),  or that the field is Euclidean.

We cari  then repeat the arguments of @j  12.8 and 12.9 (with the sub-
stitution of INyl  for NY),  and we conclude that

THEOREM 245. The fundamental theorem is true in any  Euclidean
quadratic field.

The conclusion is not confined to quadratic fields, but it is only in
such  fields that we have defined Ny and are in a position to state it
precisely.

(E) is plainly equivalent to

(E’) ‘given any  6 (integral  or not) of k( dm),  there is an integer K such  that

(14.7.1) ]N(S-K)]  <  1 ’ .

Suppose now that 6 = rfsdm,

where r and s are rational. If m + 1 (mod 4) then

K  =  Xfy%h,

where x and y are rational integers, and (14.7.1) is

(14.7.2) I(r-x)2-m(s-y)2~  < 1.

If m ~5 1 (mod4) then

K  =  X-+yf+y(%h-1)  =  X+&J+~yhZ,~

where x and y are rational integers, and (14.7.1) is

(14.7.3) l(r-x-~y)2-m(s-*y)2j  < 1.

t The form of $ 14.3 with r+y, y for a, b.
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When m = --CL < 0, it is easy to determine all fields in which these
inequalities cari  be satisfied for any  r,  s and appropriate x, y.

THEOREM 246. There are just jive  complex  Euclidean quudratic  jields,
viz. the jîelds  in which

m = -1, -2, -3, -7, -11.

There*  are two cases.

(i) When m $ 1 (mod4),  we take r = fr,  s = 3 in (14.7.2); and we
require

*+tp  < 1,
or p < 3. Hence tu  = 1 and tu  = 2 are the only possible cases; and in
these cases we cari  plainly satisfy (14.7.2),  for any  r and s,  by taking
x and y to be the integers nearest to r and s.

(ii) When m = 1 (mod 4) we take r = 4, s = & in (14.7.3). We require

~+J?e  < 1.
Since  p = 3 (mod4),  the only possible values of tu  are 3, 7, 11. Given
s, there is a y for which

128--Y]  < i!,

and an x for which jr-x--$y1  < g;

and then I(r-x-~y)z-m(s--&y)e21  < a+*  = # < 1.

Hence (14.7.3) cari  be satisfied when t.~  has one  of the three values in
question.

There are other simple fields, such  as k{,/(  - 19)) and Ic{J( -43)},  which
do not possess an algorithm; the condition is sufficient but not necessary
for simplicity.  The fields corresponding to

m = -1, -2, -3, -7, --11, -19, -43, -67, -163

are simple, and Heilbronn and Linfoot have proved that there is at
most one  more. Stark has proved that for this field (if it exists)

m < -exp(2*2X  10’)

but its existence is highly improbable.

14.8. Real Euclidean fields. The real fields with an algorithm are
more numerous and it is only very recently that they have been com-
pletely determined.

THEOREM 247.” k(v’m)  is Euclidean when
m = 2, 3, 5, 6, 7, 11, 13, 17, 19, 21, 29, 33, 37, 41, 57, 73

and for no other positive m.
We cari  plainly satisfy (14.7.2) when m = 2 or m = 3, since  we cari

choose x and y SO that Ir-xl < 4 and Is-y\ < 4. Hence k(d2)  and
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k(d3) are Euclidean, and therefore simple. We  cannot prove Theorem
247 here,  but we shall prove

THEOREM 248. k(dm)  is Euclidean when

m = 2, 3, 5, 6, 7, 13, 17, 21, 29.
If we Write

h = 0, n = m (m + 1 (mod 4)),

h = 3, n = arn (m G 1 (mod 4)),

and replace 2s by s when m 5 1, then we cari  combine (14.7.2) and

(14.7.3)  in the form
(14.8.1) I(r-x-Xy)2-n(s-y)21  <  1 .

Let us assume that there is no algorithm in k(dm).  Then (14.8.1) is
false for some rations1 r,  s and a11  integral x, y; and we may  suppose
thatt
(14.8.2) O<r<*, O<s<&.
There is therefore a pair r,  s, satisfying (14.8.2),  such  that one  or other of

[P<x,  Y>] (r-x-hyY  2 l+n(s-yY,

PWJ)I n(s-y)2 > l+(r-x-Xy)2

is true for every x, y. The particular inequalities which we shall use are

[p(o~o)l r2 > 1+ns2, [NV'>O)l ns2  > l+r2,

[P(L (41 (l-r)2  3 1+ns2, [N(l,O)l ns2  > l+(l-Y)~,

[P(-l,O)]  (l+r)2  3 1+ns2, [N(-l,O)]  ns2  3 l+(l+r)2.

t This is very easy to see when m $ 1 (mod 4) and the left-hand side  of (14.8.1) is

for this is unaltered if we Write
I(T-x)*-m(s-y)~l;

%r+% 9x+% Q SS% %Y+%
where l 1 and ca are each  1 or - 1, and u and v are integers, for

and~ecanelwayschoose~~,r,,u,vso  that qv+uand  C*~+V  liebetweenoand  + inclusive.
The situation is a little more complex  when m 3 1 (mod 4) and  the left-hand side

of (14.8.1) is I(r-x-tY)2-a~(Q-Y)Pl.
This is unaltered by the substitution of any  of

(1)  $r+u, Qz+% 9 8. iY.
(2)  T,  x-v,  .9+2v,  y+%

(3) r> XfY.  -8,  -y,
( 4 )  +-T,  -2,  .1-S,  l - y ,

for r, x, S,  y. We first use (1) to make 0 < T < 4 ; then (2) to make - 1 < s < 1; and
then, if necessary,  (3) to make 0 < s < 1. If then 0 < 8 < 4,  the reduction  is completed.
If + < s < 1, we end by using (4),  &s  we cari do because  )-r lies between 0 and 4 if
T does  SO.
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One  at least of each  of these pairs of inequalities is true for some r and
s satisfying (14.8.2). If T = s = 01,  P(O,O) and N(O,O)  are both false,
SO that this possibility is excluded.

Since r and s satisfy (14.8.2),  and are not both 0, P(0, 0) and P(l, 0)
are false; and therefore N(O, 0) and N(l, 0) are true. If P(-1, 0) were
true, then N(  1,O)  and P( - 1,0) would give

(l+?y  > 1+ns2 3 2+(1-r)”

and SO 4r > 2. From this and (14.8.2) it would follow that r = i and
ns2  = 2, which is impossib1e.t  Hence P(-1, 0) is false, and therefore
N(  - 1,O)  is true. This gives

ns2  3 l+(l+~)~  > 2,
and this and (14.8.2) give n > 8.

It follows that there is an algorithm in a11 cases in which n < 8,
and these are the cases enumerated in Theorem 248.

There is no- algorithm when m.  = 23. Take r = 0, s = 2%.  Then
(14.8.1) is ]23~~-(23y-7)~/  < 23.
Since 5 = 23~~-(23y--7)~  EE  -49 c -3 (mod23),
8 must be -3 or 20, and it is easy to’ see that each  of these hypotheses
is impossible. Suppose, for example, that

,$  ZZZ  23X2--Y2  zx  -3.

Then neither X nor Y cari  be divisible by 3, and
x2 E 1, Y2  ZE  1, if zz 22 ET!  1 (mod 3),

a contradiction.
The field lc(d23),  though not Euclidean, is simple; but we cannot  prove

this here.

14.9. Real Euclidean fields (continued).  It is naturally more diffi-
cuit  to prove that k(&n) is not Euclidean for a11 positive m except those
listed in Theorem 247, than to prove Ic(&n)  Euclidean for particular
values of m. In this direction we prove only

THEOREM 249. The number of real Euclidean jields  k(dm),  where
m E 2 or 3 (mod 4), is Jinite.

t Suppose that s = p/p, where (p, q)  = 1. If m $ 1 (mod 4), then m = n and
4mpe  = 5q2.

Hence p* 15, SO that p = 1; and q*  I4m. But m bas no squared factor,  and 0 < s < t.
Hence q = 2, s = $, and m = 5 = 1 (mod 4), a contradiction.

Ifm~l(mod4),thenm=4nand

w 2 = 5q2.
From this we deduce p = 1, q = 1, s = 1, in contradiction to (143.2).
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Let us suppose k(zim)  Euclidean and m + 1 (mod4). We take r = 0
and s = t/m  in (14.7.2),  where t is an integer to be chosen later.  Then
there are rational integers x, y such  that

1x2-m(y-3’1  < 1, l(my-t)2-mz2/  <  m .

Since (my-t)2-mx2  = t2  (modm),

there are rational integers x, z such  that

(14.9.1) z2--mx2  = t2  (modm), 1.z2-mx21 < m.

If m G 3 (mod 4),  we choose t an odd integer such  that
5m < t2 < 6m,

as we certainly cari  do if m is large enough. By (14.9.1),  z2-mx2  is
equal to t2-5m  or to t2-6m,  SO that one  of

(14.9.2) t2-z2  = m(5-x2), t2-z2  = m(6-x2)

is truc.  But, to modulus 8,

Pf  1, z2,  x2  E 0 1 or 4>> > m f 3 or 7;
P--z2  E 0, 1, or 5,

5-x2  E 1, 4, or 5; 6--x2  G 2, 5, or 6;

m(5-x2)  s 3, 4, or 7; m(6-x2)  E 2, 3, 6, or 7;

and, however we choose the residues, each  of (14.9.2) is impossible.
If m = 2 (mod4),  we choose t odd and such  that 2m < t2 < 3m,  as

we cari  if m is large enough. In this case, one  of

(14.9.3) P-z2  = m(2-x2), t2-.z2  = m(3-x)2

is true. But, to modulus 8, m = 2 or 6:

2-x2  c 1, 2, or 6; 3-x2  E 2, 3, or 7;

m(2-x2)  E 2, 4, or 6; m(3-x2)  = 2, 4, or 6;

and each  of (14.9.3) is impossible.
Hence, if m = 2 or 3 (mod 4) and if m is large enough, k(zlm)  cannot

be Euclidean. This is Theorem 249. The same  is, of course, true for
m = 1, but the proof  is distinctly more difficult.

NOTES ON CHARTER XIV

$8 14.1-6. The theory of quadratic fields is developed in detail in Bachmann’s
Grundlehren der neueren Zahlentheorie (Goschens  Lehrbücherei, no. 3, ed. 2, 1931)
and Sommer’s Vorlesunyen  über Zahlentheorie.  There is a French  translation of
Sommer’s book, with the title Introduction à lu théorie des nombres algkbriques
(Paris, 1911); and a more elementary account  of the theory, with many  numerical
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examples, in Reid’s The elementa of the theory of algebraic numbers  (New York,
1910).

$ 14.5. The equation x1--my2  = 1 is usually called Pell’s equation, but this
is the result of a misunderstanding. See Dickson, History, ii, ch. xii, especially
pp. 341, 351, 354. There is a very  full account of the history of the equation in
Whitford’s The PeZZ equation (New York:, 1912).

5 14.7. The work of Heilbronn and Linfoot referred to Will  be found in the
Quarterly  Journal of Math. (Oxford), 5 (1!)34), 150-60 and  293-301. Stark’s result
[Trucs.  Amer. Math. Soc. 122 (1966), 112-91  is an improvement of Lehmer’s
that m > -5.109.

3 14.8-9. Theorem 247 is essentially due to Chatland and Davenport [Can~&on.
Journal of Math. 2 (1950), 289-961.  Davenport [Proc. London Math. Soc. (2)
53 (1951), 65-821  showed that k(dm)  cannot be Euclidean if m > 2rp = 16384,
which reduced the proof  of Theorem 247 to the study of a finite number of values
of m. Chatland [Bulletin Amer. Math. Soc. 55 (1949), 948-531  gives a list of
references  to previous results, including a mistaken announcement by another
that k(1197)  was Euclidean. Barnes and ,Swinnerton-Dyer  [Acta  Math. 87 (1952),
259-3231  show that k(d97)  is not, in fact, Euclidean.

Our proof  of Theorem 248 is due to Oppenheim, Math. AnnaZen,  109 (1934),
349-52, and that of Theorem 249 to E. Berg, Fysiogr.  SU&.  Lund. E”orh.  5 (1935),
l-6.

The problem of determining a11 m for which h(+‘m)  is simple is very much more
dficult  and SO far unsolved.
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QUADRATIC FIELDS (2)

15.1. The primes of k(i). We begin this chapter by determining
the primes of k(i) and a few other simple quadratic fields.

If n is a prime of k(zlm),  then

?7lN7r  = Tr77

and 7r  1 INnI.  There are therefore positive rational integers divisible
by n. If z is the least such  integer, z = .z1.z2,  and the field is simple,
then 7rIz1z2  + ~712~  or 771z2,

a contradiction unless z1 or .z2 is 1. Hence z is a rational prime. Thus
r divides at least one  rational prime p. If it divides two, say  p and p’,
then 7rlp  . 7r’jp’  + rrjpx-p’y  = 1

for appropriate x and y, a contradiction.

THEOREM 250. Any prime n of a simple jield  k(dm)  is a diviser  of just
one  positive rational prime.

The primes of a simple field are therefore to be determined by the
factorization, in the field, of rational primes.

We consider k(i) first. If

7~  = afbi Ip, n-h  = p,

then N-rrNX  = ~2.

Either NA  = 1, when h is a unity and rr an associate of p, or

(15.1.1) NT  = a2fb2  = p.

(i) If p = 2, then

p = 12+12  = (lfi)(l-i)  = i(l-iy.

The numbers l+i, -I+i,  -l-i, l-2’ (which are associates) are
primes of k(i).

(ii) If p = 4n+3,  (15.1.1) is impossible, since  a square is congruent
to 0 or 1 (mod4). Hence the primes 4nf3  are primes of k(i).

(iii) Ifp = 4n+l,  then

by Theorem 82, and there is an x for which

P 1x2+1, P IL(x++-i).
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Ifp were a prime of k(i), it would dlvide x+i  or x-i, and this is false,
since  the numbers

,-*;

are not integers. Hence p is not a prime. It follows that p = TX,  where
rr = afbi,  X = a-bi, and

NTT  = a2:b2  = p.
In this case p cari  be expressed as a sum of two squares.

The prime divisors of p are
(151.2) 7r,  i7r, -T,  -i7r,  h, ih,  -h,  -ih,
and any  of these numbers may  be substituted for rr.  The eight varia-
tions correspond to the eight equations
(151.3) (&a)2+(4d)2  = (+b12+(*aJ2  = p.
And if p = c2+d2  then c+id Ip, SO that c+id is one  of the numbers
(15.1.2). Hence, apart  from these variations, the expression of p as a
sum of squares is unique.
THEOREM 251. A rationul  prime p = 4nf 1 cari  be expressed as a sum

a2+b2  of two squares.
THEOREM 252. The primes of k(i) are
(1) 1 +i and its associates,
(2) the rational primes 4n+3  and their associates,
(3) the factors  a+bi of the rational primes 4n+  1.

15.2. Fermat’s theorem in k(i). As an illustration of the arith-
metic  of k(i), we Select  the analogue of Fermat’s theorem. We consider
only the analogue of Theorem 71 and not that of the more general
Fermat-Euler theorem. It may  be worth repeating that y 1 (CL-~)  and

~zfl(rnody)

mean,  when we are working in the field k(9), that a-p = KY,  where
K is an integer of the field.

We denote rational primes 4n+  1 and 4n+3  by p and q respectively,
and a prime of k(i) by rr. We confine our attention to primes of the
classes (2) and (3),  i.e. primes whose norm is odd; thus n is a q or a
divisor of a p. We Write

r$(7r)  = NF-l,
SO that

4(n) = P-l  (TlP)1 $(7r)  = q2-1 (77 = q).

THEOREM 2.53. If (CII,  n)  = 1, then
&) E 1 (mod r).
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Suppose that 01= l+im. Then, when 7 j p, ip = i and

~9’  = (Z+im)P  = Zp+(im)p  = P+imP  (modp),

by Theorem 75; and SO

a? E lfim = 01  (modp),

by Theorem 70. The same  congruence is true modn,  and we may
remove the factor  01.

When 7~  = q, in = -i and

o? = (Z+im)q  E Zq-irna  E Z-im = CU  (modq).

Similarly, oiq  E 01,  SO that
ci@ f a, c@-l = 1 (modq).

The theorem cari  also  be proved on lines  corresponding to those of
$ 6.1. Suppose for example that n = a+bi  Ip. The number

(a+bi)(c+di)  = ac-bd+i(ad+bc)
is a multiple of rr  and, since  (a, b) = 1, we cari  choose c and d SO that
ad+bc  = 1. Hence there is an s such  that

7r 1 S+i.
Now consider the numbers

r = 0, 1, 2, . ..> ïvn-1  = a2+F-1,

which are plainly incongruent (modr).  If x+yi  is any integer of k(i),
there is an r for which

x-sy E r (modNn);

and then xfyi  c y(s+i)+r  SE r (modn).

Hence the Y form a ‘complete system of residues’ (modn).
If 01  is prime to 7~,  then, as in rational arithmetic, the numbers CU  also

form a complete system of residues.7  Hence
JJ (ar)  E -j-J  r (modr),

and the theorem follows as in $ 6.1.
The proof  in the other case is similar, but the ‘complete system’ is

constructed differently.

15.3. The primes of k(p). The primes of k(p) are also factors of
rational primes, and there are again  three cases.

(1) If p = 3, then
p = (l-p)(l-p2) = (lfP)(l-p)2 = -p2(1-p)2.

By Theorem 221, 1 -p is a prime.
t Compare Theorem 58. The proof  is essontially the same.
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(2) If p E 2 (mod 3) then it is im,possible  that Nrr  = p, since
4N7r  = (2~-b)~+3b~

is congruent to 0 or 1 (mod3). Hence  p is a prime in k(p).
(3) If p 2 1 (mod3) then

( )
-3 1
y=

by Theorem 96, and p 1 z2+3.  It then follows as in Q 15.1 that p is
divisible by a prime 7r  = a+bp,  and  that

p = Nrr  = a2-ab+b2.

THEOREM 254. A rational prime 3nfl  is expressible in the form
a2-ab+b2.

THEOREM 255. The primes of k(p) are
(1) l-p and  its associates,
(2) the rational primes 3n+2  and their associates,
(3) the fuctors  afbp  of the rationul  primes 3nf  1.

15.4. The primes of k(d2)  and k(d5). The discussion goes  similarly
in other simple fields. In k(d2), for example, either p is prime or
(15.4.1) . Nn = a2-2b2  = &p.

Every square is congruent to 0, 1, or 4 (mod 8),  and (15.4.1) is impossible
when p is 8n&3. When p is 8n&I1,  2 is a quadratic residue of p by
Theorem 95, and we show as before that p is factorizable. Finally

2 = (d2)2,
and 42 is prime.

THEOREM 256. The primes of k(2/2)  are (1) 42, (2) the rational primes
8n&3, (3) the factors a+bzi2  of rational primes Sn&l (and the associates
of these numbers).

We consider one  more example because we require the results in
5 15.5. The integers of k(d5)  are the numbers a+bw,  where a and b
are rational integers and
(15.4.2) w = *(  1$115).

The norm of a+ bw  is a2+ab-b2.
The numbers
(15.4.3) *co*%  ( n  ==  0,1,2,...)

are unities, and we cari  prove as in 3 14.5 that there are no more.
The determination of the primes depends upon the equation

Nr  = a2+ab-b2  = p,
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Ol- (2a+b)2-5b2  = 4p.

If p = 5n&2, then (2a+b)2  = &3  (mod5),  which is impossible. Hence
these primes are primes in k(zi5).

Ifp = 5n&l,  then 05 1P=’
by Theorem 97. Hence p 1 (x2-5) for some x, and we conclude as before
that p is factorizable. Finally

5 = (215)2  = (2w-1)2.

THEOREM 257. The unities  of k(d5)  are the numbers (15.4.3). The
primes are (1) 45, (2) the rational primes 5nf  2, (3) the factors afbw of
rational primes 5n& 1 (and the associates of these numbers).

We shall also need the analogue of Fermat’s theorem.

THEOREM 258. If p and q are the rationul  primes 5nfl  and 5nf2
respectively;  4(n) = INnI  - 1, SO that

4(n) = P-1 (nII)L C#(n)  = 42-l (7f  = q);

and  (a, T)  = 1; then

(15.4.4) dn) z 1 (modn),

(15.4.5) cP-l E 1 (modn),

(15.4.6) &+l  = Nec  (modq).

Further, if 7~ 1 p, 7i is the conjugute  of T,  (a,~) = 1 and (a, +) = 1, then

(15.4.7) G-l = 1 (modp).

First, if 2ci = c+cN5,

then 2cP  E (2~x)P  = (cfd&)P 3 cP+G!P~~(P-~)~~~  (modp).

But

cp z c and dp E d. Hence

(15.4.8) 201~  E c+dzi5  = 2a (modp),

and a fortiori

(15.4.9) 2~ E 2a (modn).

Since  (2, r) = 1 and (01, n)  = 1, we may  divide by 201,  and obtain
(15.4.5). If also (LX,+)  = 1, SO that (cx,~)  = 1, then we may  divide
(15.4.8) by 2or, and obtain (15.4.7).

Similarly, if q > 2,

(15.4.10) 2aq  = c-dd5  = 25, aq G oi (modq),
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(15.4.11) d+l  G C~E = .Na (modq).

This proves (15.4.6). Also (15.4.10) involves
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&*  E &q  z x (modq),
(15.4.12) aqa-1  G 1 (modq).
Finally (15.4.5) and (15.4.12) together contain  (15.4.4).

The proof  fails  if q = 2, but (15.4.4) and (15.4.6) are still true. If
a!  = e +~OJ  then one  of e and f is odd, and therefore Nar  = e2 + ef -f 2 is
odd. Also, to modulus 2,

a2  s e2+f2w2 f e+ff.0”  = e+f(w+l)  E e+f(l-w)  =  e+fG  =  Z
and 0~3  z acr = Na s 1.

We note in passing that our  results give incidentally another proof  of Theorem
180.

The Fibonacci number is
wn-&n wn-&jn

un=-=-,
CU-C.3 45

where w is the number (15.4.2) and 6 = - l/w  is its conjugate.
If rz  = p, then

UP-~ E 1 (modp), WV-’ = 1 (modp),

uPm12/5  = oP-l-G-1  3 0 (modp),

and therefore upwl  = 0 (modp). If m = q, then
&+1  3 Nw, &a+1  E Nw (mod d,

and u~+~ - 0 (modq).
uq+l  45 = 0 (modq)

15.5. Lucas’s test for the primality of the Mersenne number
M4n+3. We are now in a position to prove a remarkable theorem which
is due, in substance at any  rate, to :Lucas,  and which contains  a neces-
sary  and sufficient condition for the primality of &&+a; Many  ‘necessary
and sullicient  conditions’ contain  no more than a transformation of a
problem, but this one  gives a practical test which cari  be applied to
otherwise inaccessible examples.

We define  the sequence

r1, r2> f-3>... == 3, 7, 47,...

bY 9-m = &m+(32m,

where w is the number (15.4.2) and W  = -l/w.  Then

rm+l = r&-2.

In the notation of $ 10.14, r,,,  = v2,,,.
No  two rm have a common factor, since (i) they are a11 odd, and

(ii) r, s 0 + rm+l  c -2 + r,  F 2 (v  > m+l),

to any  odd prime modulus.
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THEOREM 259. If p is a prime 4nf3,  and
M=Mp=2p-1

is the corresponding Mersenne number, then M is prime if
(15.51) rp-r E 0 (modM),
and otherwise composite.

(1) Suppose M prime. Since
M E 8.16n-1 3 8-1 E 2 (mod5),

we may  take cy  = w, q = M in (15.4.6). Hence

w2p  = #+lz Nw  = -1 (modM),
rpvl  = w~~-‘(co~~+  1) c 0 (mod M),

which is (155.1).
(2) Suppose (15.5.1) true. Then

ww+ 1 = w2p-‘rp-l  E 0 (mod M),
(15.52) CP e -1 (mod M),
(15.5.3) w2’+l  EE  1 (modM).
The same  congruences are true, a fortiori, to any  modulus -r which
divides M.

Suppose that M = P,P2**41Q2-**

is the expression of M as a product of rational primes, pi being a prime
5n&l  (SO that pi is the product of two conjugate primes of the field)
and pi  a prime 5n&2. Since M G 2 (mod5),  there is at least  one  qi.

The congruence wz  z 1 (modT),
or P(x), is true, after (15.5.3),  when x = ~P+I,  and the smallest positive
solution is, by Theorem 69, a divisor of ~P+I.  These divisors, apart
from 2p+l,  are 2p, 2p-l,..,, and P(x) is false for a11 of them, by (15.5.2).
Hence 2p+r  is the smallest solution, and every solution is a multiple of
this one.

But OP~-l  3 1 (modpJ,

,2(%+1)  = ($7~)~  E 1 (modqi),

by (15.4.7) and (15.4.6). Hence pi-1 and 2(qj+l) are multiples of
~P+I,  and pi = 2p+lhi+l,

qj  = 2%$-l,

for some hi and kj.  The first hypothesis is’impossible because the right-
hand side  is greater than M; and the second is impossible unless

Hence M is prime.
k,=  1, qj  = M.
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The test in Theorem 259 apphes only when p = 3 (mod 4). The
sequence 4, 14, 194,...

(constructed by the same  rule)  gives a test (verbally identical) for anyp.
In this case the relevant field is k(zi3).  We have selected the test in
Theorem 259 because the proof  is slightly simpler.

TO takc  a trivial example, suppose p = 7,  M, = 127. The numbers
rrn  of Theorem 259, reduced (modM),  are

3, 7, 47, 2207 s 48, 2302 F 16, 254 E 0,
and 127 is prime. Ifp = 127, for example, we must square 125 residues,
which may  contain  as many  as 39 digits (in the decimal  scale). Such
computations were, until recently, formidable, but quite  practicable,
and it was in this way that Lucas showed il& to be prime. The construc-
tion of electronic digital computers has enabled the tests to be applied
to ïl$ with larger p. These computers usually work in the binary scale
in which reduction to modulus 2” -- 1 is particularly simple. But their
great advantage is, of course, t.heir  speed. Thus il& was tested in about
a minute by SWAC and M,,,, in about an hour. Each  minute of this
machine’s  time is equivalcnt to more than a year’s work for someone
using a desk calculator.

15.6. General remarks on the arithmetic of quadratic fields.
The construction of an arithmetic in a field which is not simple, like
k[J(  -5)) or k(%‘lO),  demands new ideas which (though they are not
particularly difficult)  we cannot  develop systematically here. We add
only some miscellaneous  remarks which may  be useful to a reader who
wishes to study the subject more seriously.

We state below three properties, A, B, and C, common to the ‘simple’
fields which we have examined. These properties are a11 consequences
of the Euclidean algorithm, when such  an algorithm exists, and it was
thus that we proved them in these fields. They are, however, true in
any  simple field, whether the field is Euclidean or not. We shall not
prove SO much  as this; but a little consideration of the logical relations
between them Will  be instructive.

A. If 01  and p are integers of the jield,  then there is an integer 6 with
the properties

(A i) 6 1% 6 lb
and
(A ii) s,la.s,lp+  S,lS.

Thus 6 is the highest, or ‘most comprehensive’, common divisor (a, p)
of CY.  and /3,  as we defined it; in Ic(i),  in 5 12.8.

5581 Q
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B. If a and j3  are integers of the jield, then there is an integer 6 with
the properties
(B il 6 I % SlP
and (B ii) 8 is a lineur  combination of 01  and /3;  there are integers X and p
such  thut Aci+pp = 6.

It is obvious that B implies A; (B i) is the same  as (A i), and a 6 with
the properties (B i) and (B ii) has the properties (A i) and (A ii). The
converse, though true in the quadratic fields in which we are interested
now, is less obvious, and depends upon the special  properties of thése
fields.

There are ‘ f ields ’  in  which ‘ integers ’  possess  a  highest  common divisor in sense
A but not in sense B. Thus the aggregate of a11  ratio& functions

P(XFY)
R(GY)  = Q(x,y)

of two independent variables, with rational coefficients, is a field in the sense
explained at the end of 5 14.1. We may cal1  the polynomials P(x, y) of the field
the ‘integers’, regarding two polynomials as the same  when they differ only by
a constant factor.  Two polynomials have a greatest common divisor in sense A;
thus x and y have the greatest common divisor 1. But there are no polynomials
P(x, y) and &(z, y) such  that

xP(x,y)+yQ(x,y) = 1.

C. Factorization  in the jield is unique: the jield is simple.
It is plain that B implies C; for (B i) and (B ii) imply

SY I VP hJ  I Pr, X~YfPPY = sy,
and SO

(15.6.1) bY,PY)  = SYi
and from this C follows as in 0 12.8.

That A implies C is not quite  SO obvious, but may  be proved as
follows. It is enough to deduce (15.6.1) from A. Let

br,Pr)  = A.
T h e n 6101.  SIB 4 GYlolY  * GYIBY,
and SO, by (A ii), ~YIA.
Hence A = Syp,
say.  But A [ cty,  A I/3y  and SO

~PI~, SPIBi
and hence,  again  by (A ii), ~PI~.
Hence p is a unity,  and A = 6~.

On the other hand, it is obvious that C implies A; for 6 is the product
of a11  prime factors common to c( and /3.  That C implies B is again  less
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immediate, and depends,  like the inference  from A to B, on the special
properties of the fields in question.?

15.7. Ideals in a quadratic field. There is another property
common to a11 simple quadratic fields. TO tix  our ideas, we consider
the field Ic(i),  whose basis (5 14.3) is [l,i].

A lattice A is$ the aggregate of ail  points11

ma-t  nt%
01  and /3  being the points P and Q of 5 3.5, and m and n running through
the rational integers. We say  that [or,/31  is a basis of A, and Write

a lattice will,  of course, have many  different bases. The lattice is a
modulus in the sense of 5 2.9, and has the property
(15.7.1) ~ER.~EA,+  mp+naEA

for any  rational integral m and n.
Among lattices there is a sub-class of peculiar importance. Suppose

that A has, in addition to (15.7.1),  the property

(15.7.2) y~A  + iy~A.

Then plainly my E A and niy E A, and  SO

y~A  + /L~EA

for every integer tu  of k(i); a11  multiples of points of A by integers of k(i)
are also points of A. Such  a lattice is called an ideal. If A is an ideal,
and p and u belong to A, then ppfvu  belongs to A:

(15.7.3) p~A.a~A+ppfva~A

for all integral p and Y. This property includes,  but states much  more
than, (15.7.1).

Suppose now that A is an ideal with basis [cx,/~],  and that

(a,/?)  = 6. *

Then every point of A is a multiple of 6.  Also, since  6 is a linear com-
bination of 01  and ,13,  6 and a11 its multiples are points of A. Thus A is
the class  of all multiples of 6; and it is plain that, conversely, the class
of multiples of any  6 is an ideal A. Any ideal is the class  of multiples of
an integer of the$eld,  and any such  class  is an ideal.

t In fact  both inferences depend on just  those arguments which are required in the
elements of the theory of ideels in a quadretic field.

$ See 5 3.5. There, however, we  reserved the symbol h for the principal lattice.
/I We do not distinguish between a point and the number which is its affix in the

Argand diagram.
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If A is the class of multiples of p, we Write

A = {PI*
In particular the fundamental ïattice, formed by a11 the integers  of the
field, is {l}.

The properties of an integer p may  be restated as properties of the
ideal {p].  Thus u 1 p means  that {p} is a part of {u).  We cari  then say
that ‘(p] is divisible by (u}‘, and Write

bll{Ph
Or again  we cari  Write

(u>  IP, P = 0 (mod{a}L

these assertions meaning that the number p belongs to the ideal {u}.
In this way we cari  restate  the whole of the arithmetic of the field in
terms of ideals, though, in k(i), we gain nothing substantial by such  a
restatement. An ideal being always the class of multiples of an integer,
the new arithmetic is merely a verbal translation of the old one.

We cari,  however, define  ideals in any  quadratic field. We wish to
use the geometrical imagery .of the complex plane, and we shall there-
fore consider only complex fields.

Suppose that k(h)  is a complex field with basis [l,w].t  We may
define  a lattice as we defined it above in k(i), and an ideal as a lattice
which has the property

(15.7.4) yeR  + qJER

analogous to (15.7.2). As in k(i), such  a lattice has also the property
(15.7.3),  and this property might be used as an alternative definition
of an ideal.

Since  two numbers 01  and ,!3  have not necessarily a ‘greatest common
divisor’ we cari  no longer prove that an ideal r has necessarily the form
{p}; any  {p} is an ideal, but the converse is not generally true. But the
definitions above, which were logically independent of this reduction,
are still available; we cari  define

slr
as meaning that every number of r belongs to s, and

prO(mods)

as meaning that p belongs to s. We cari  thus define  words like divisible,
diviser,  and prime with reference  to ideals, and have the foundations
for an arithmetic which is at any  rate as extensive as the ordinary arith-
metic  of simple fields, and may  perhaps be useful where such  ordinary

t w  = dm.  when rn  f 1 (mod 4).
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arithmetic fails.  That this hope is justified, and that the notion of an
ideal leads to a complete re-establishment of arithmetic in any  field, is
shown in systematic treatises on the theory of algebraic numbers. The
reconstruction is as effective in real as. in complex fields, though not a11
of our geometrical language is then appropriate.

FIG. 8

An ideal of the special  type {p} is called a principal ideal; and the
fourth characterist,ic  property of simple quadratic fields, to which we
referred at the beginning of this section, is

D. Every ideal of a simple Jield  is a principal ideal.
This property may  also be stated, when the field is complex, in a

simple geometrical form. In k(i) a,n  ideal, that is to say  a lattice with
the property (15.7.2),  is square; for it is of the form {p}, and may  be
regarded as the figure of lines  based on the origin and the points p
and ip. More generally

E. If m < 0 and k(dm)  is simple, then every ideal of k(dm)  is a lattice
similar in shape to the lattice formetl  by a11 the integers of the Jield.
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It is instructive to verify that this is not true in k{,j(  -5)). The lattice

ma+?z/9  = m.3+n{-lfJ(4))

is an ideal, for w = J( -5) and

wff = a+3/?, wg = -2Lx-/3.

But, as is shown by Fig. 8 (and may,  of course, be verified analytically),
the lattice is not similar to the lattice of a11 integers of the field.

15.8. Other fields. We conclude this chapter with a few remarks
about some non-quadratic fields of particularly interesting types. We
leave the verification of most of our assertions to the reader.

(i) The$eZd  k(d2+i).  The number

8 = 1124-i
satisfies lY-292-+9  = 0,

and the number defmes  a field which we denote by k(42+i).  The
numbers of the field are
(15.8.1) .$  = r+si+t42+ui2/2,

where r,  s,  t,  u are rational. The integers of the field are

(15.8.2) 5 = a+bi+c2/2+&42,

where a and b are integers and c and d are either both integers or both
halves of odd integers.

The conjugates  of 5 are the numbers tr,  f2, ta formed by changing the
sign of either or both of i and 42 in (15.8.1) or (15.8.2),  and the norm
N5  of 8 is defined by

Nt = 4&tzc%

Divisibility, and SO forth, are defined as in the fields already considered.
There is a Euclidean algorithm, and factorization is unique.t

(ii) TheJieZd  k(d2+d3).  The number

9 = d2+2/3,

satisfies the equation P-lOP$l = 0.

The numbers of the field are’

5 = r+sd2+td3+ud6,

and the integers are the numbers

t = a+bd2+c1/3+dd6,

where a and c are integers and b and d are either both integers or both

t Theorem 215 stands in the field a8  stated in § 12.8. The proof  demanda Borne
calculation.
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halves of odd integers. There is again  a Euclidean algorithm, and
factorization is unique.

These fiel& are simple examples of ‘biquaclratic’ fiel&.
(iii) The Jield  k(etffi).  The number 9 = efrri  satisfies the equation

95-l

6 - l - lY+lY+ir2+6+1 = 0.

The field is, after k(i) ad k(p), the simplest ‘cyclotomic’ fie1d.t
The numbers of the field are

4 = r+s19+tlY2+uQ3,

and the integers are the numbers in which r,  s, t, u are integral. The
conjugates  of 4 are the numbers tl, c2,  5, obtainecl by changing 8 into
G2,  a3, a4, ad its norm is

N5  = LL152t3.

There is a Euclidean algorithm, ad factorization is unique.
The number of unities in k(i) ad k(p) is finit?. In k(eini)  the number

is infinite. Thus (l+a) I (~+~2+~3+64)
and 8+92+83+94  = - 1, SO that 1+8 ad a11 its powers are unities.

It is plainly this field which we must consider if we wish to prove
‘Fermat’s last theorem’, when n = 5, by the method of $ 13.4. The
proof  follows the same  lines,  but there are various complications of
detail.

The field defined by a primitive nth root of unity  is simple, in the
sense of $ 14.7, when$ n = 3, 4, 5, 8.

NOTES ON CHAPTER XV
$ 15.5. Lucas stated two tests for the primality of Mr, but his statements of

his theorems vary, and he never  published any complete  proof of either. The
argument in the text is due to Western, Journal London Math. Soc. 7  (1932),
1367.  The second theorem, not proved in the text, is that referred to in the
penultimate paragraph of  the section. Western proves this theorem by using the
field k(1/3).  Other proofs, independent of the theory of algebraic numbers, have
been given by D. H. Lehmer, Ann&  of Math. (2) 31 (1930),  419-48, and Journal
London Math. Soc. 10 (1935),  162-5.

Professor Newman has drawn  our  attention to the following result, which cari
be proved by a simple extension of the argument of this section.

t The field k(9),  with 6 a primitive nth mot  of unity,  is called cyc.!otontic  because 9
and its powers are the complex  coordinates of the vertices  of a regular  n-agon  inscribed
in the unit circle.

% et ni = e tni  _ I+i- 7 1s a number of k(zlt+i).d
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Let h < 2”  be odd, M = 2”lh-  1 = +2  (mod 5) and
R, == ,zh+G2h, Rj = Rj2-I-2  (j > 2).

Then a necessary and su.cient  condition for M to be prime is that

R = 0 (mod M).m-1 -
This result was stated by Lucas [Amer. Journal of Math. 1 (1878),  3101,  who

gives a similar (but apparently erroneous) test for numbers of the form
N = h2m+l.  The primality of the latter cari,  however, be determined by the
test of Theorem 102, which also requires about m  squarings and reductions
(modN).  The two tests would provide  a practicable  means  of seeking large
prime pairs  (p,p+2).

$1  15.67.  These sections have been much  improved as a result of criticisms
from Mr. Ingham, who read an carlier  version. The remark about polynomials
in 3 15.6 is due to Bochner, Journal London Math. Soc. 9 (1934),  4.

5 15.8. There is a proof that k(egni)  is Euclidean in Landau, Vorkxungen,  iii.
228-31.
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THE ARITHMETICAL FUNCTIONS d(n),  p(n),  d(n), a(n), r(n)

16.1. The function 4(n). In this and the next two chapters  we
shall study the properties of certain ‘arithmetical functions’ of n, that
is to say  functions f(n) of the positive integer n defined in a manner
which expresses some arithmetical property of n.

The function $(n) was defined in 0 5.5, for n > 1, as the number of
positive integers less than and prime to n. We proved (Theorem 62)
that

(16.1.1)

This formula is alao  an immediate consequence  of the general principle

-YY
expressed by the theorem which follows.

/}Y : -I- ) THEOREM 260. If there are N abjects,  of which N, have the property,a,
Y.?’  Np  have fi,..., Nolp huve  both 01  and p ,.,.,  N+,  have 01,  /3,  and y ,...,  and SO on,

then the number of the abjects  which have none  of a, /3,  y,..:  is

__ (16.1.2) N-N,-Np-...+Nap+...-Napr-...  .
1_.._-

Suppose that 0 is an abject which has just k of the properties 01,  /3,...  .
Then 0 contributes 1 to N. If k 3 1, 0 also contributes 1 to k of
N,,  NF,..., to +k(k-1) of Na,+..,  to

k(k- l)(k-2)
1.2.3

of Napyr..., and SO on. Hence, if k i>  1, it contributes

l-k+k(k-l) k(k-1)(k-2)+s..  = (l-1)”  = 0~_~~
1.2 1.2.3

to the sum (16.1.2). On the other hand, if k = 0, it contributes 1.

Hence (16.1.2) is the number of abjects possessing none  of the pro-
perties.

The number of integers not greater than n and divisible by a isn[1-- .CL
If a is prime to b, then the number of integers not greater than n, and
divisible by both a and b, is ‘n

L--l;ab
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and SO on. Hence, taking (Y, /3,  y ,...  to be divisibility by a, b, c ,...,  we
obtain

THEOREM 261. The number of integers, less  thun  or equul  to n, and  not
divisible by any  one  of a coprime  set of integers a, b,...,  is

If we take a, b,... to be the different prime factors p, p’,... of n, we
obtain

(16.1.3) 4(n) = n- xi+  cs-...  = ng(l-i),

which is Theorem 62.

16.2. A further proof  of Theorem 63. Consicler the set of n
rational fractions

(16.2.1) i ( 1  <h<n).

We cari  express each  of these fractions in ‘irreducible’ form in just one
way, that is, h a-=-

n d’
where d 1 n and
(16.2.2) l<a<d, (a,4  = 1,
ad a and d are uniquely cletermined by h ad n. Conversely, every
fraction a/d,  for which d / n ad (16.2.2) is satisfied, appears in the set
(16.2.1),  though in general not in reduced form. Hence, for any  func-
tion F(x), we have. ,

(16.2.3)

Again,  for a particular d, there are (by definition) just +(d)  values of
a satisfying (16.2.2). Hence, if we put F(z)  = 1 in (16.2.3),  we have

n = d&+@).

16.3. The Mobius function. The Mobius function p(n) is defined
as follows :

(0 ~(1) = 1;
(ii) p(n) = 0 if n has a squarecl factor;

(iii) p(p,pz...pk)  = (-l)k if a11 the primes p,, p2,...,  p, are different.

Thus ~(2) = -1, ,a(4) = 0, ~(6) = 1.
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THEOREM 262. p(n) is multiplicative.~

This follows immediately from the definition of p(n).
From (16.1.3) and the definition of p(n) we obtain
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(16.3.1) 4(n)  = n c pg = c ;/A@)  = c d$) =ddz/‘p(d).$dln dl% dln
Next, we prove

THEOREM 263:

& p(4 - 1 (n  = l), &44 = 0 (n  > 1).

THEOREM 264. If n > 1, and k is the number of different prime factors
of n, then

& lkwl  = Zk.

In fact,  if k > 1 and n = py...pp,  we have

&44  = lf p(PJf  &4PiPj)-t...w

=  l - k +  “2 - k

0 0
3 +...  = (l-1)k  = 0,

while, if n = 1, p(n) = 1. This proves Theorem 263. The proof  of
Theorem 264 is similar. There is an alternative proof  of Theorem 263
depending on an important general theorem.

THEOREM 265. 1ff( n is a multiplicative function  of n, then SO is)

s(n)  = dgf (4.

If (qn’)  = 1, cl 1 n, and d’ 1 n’, then (d,d’) = 1 and c = a%$’  runs
through a11 divisors of nn’. Hence

dnn’)  = 2 f (cl = d,nz,n,f  kWcl?m
= dI$f W.T&f  W = c7bMn’).

TO deduce Theorem 263 we Write  f(n) = p(n), SO that

s(n) = ,&PW.

Then g(1) = 1, and dPrn)  = l-t-CL(P)  = 0

when m > 1. Hence, when n = pT...pF > 1,

s(n)  = g(p?Mp%“)-.  = 0.

t See 5 5.5.
$ A sum cxtended  over  a11  pairs d,  d’  for which &Y  = n.
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16.4. The Mobius inversion formula. In what follows we shah
make frequent use of a general ‘inversion’ formula first proved by
Mobius.

THEOREM 266. 1f

then

In fact

The inner sum here is 1 if n/c  = 1, i.e. if c = n, and 0 otherwise, by
Theorem 263, SO that the repeated sum reduces to f(n).

Theorem 266 has a converse expressed by

THEOREM 267:

f(n) = 2 kf$7(4  + s(n)  = &f@).

The proof  is similar to that of Theorem 266. We have

If we put g(n) = n in Theorem 267, and use (16.3.1),  SO that
f(n) = 4(n), we obtain Theorem 63.

As an example of the use of Theorem 266, we give another proof  of
Theorem 110.

We suppose that d / p- 1 and c 1 d, and that x(c)-  is the number of
roots of the congruence xd ~‘1  (modp) which belong to c. Then (since
the congruence has d roots in all)

1 x(c)  = d;
Cld

from which, by Theorem 266, it follows that
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16.5. Further inversion formulae. There are other inversion
formulae involving p(n), of a rather different type.

THEOREM 268. If G(x) = 5 F(E)
TL=l

for a11 positive x,-f  then [Xl,
F(x) = 2 p(n)G

n=,
For

by Theorem 263. There is a converse, viz.

THEOREM 269:
[Xl [xl

F(x) = c p(n)G
2 0

F E .
n=1 n=1

This may  be proved similarly.
Two further inversion formulae are contained in

THEOREM 270:

04 = Zif<mx) -f(x)  =n~lk4nMns).
m=1

The reader should have no difficult’y  in constructing a proof  with
the help of Theorem 263; but some tare  is required about convergence.
A sufficient condition is that

should be convergent. Here d(k) is the number of divisors of k.11

16.6. Evaluation of Ramanujan’s sum. Ramanujan’s sum c,(m)
was defined in 5 5.6 by

(16.6.1) c,(m)  = 2
l$h<n

e(q.
(h,n)  = 1

We cari  now express c,(m) as a sum extended over the common divisors
of m and n.

THEOREM 271: c,(m) = 7
d,nl,d,n

t An empty sum is as usual to be interpreted as 0. Thus G(z) = 0 if 0 < r < 1.
1 If mn = k then n 1 k, and k runs through the numbers 1, 2,...,  [z].
11 See 8 16.7.
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If we write
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(16.2.3) becomes

By Theorem 266, WC have the inverse formula

(16.6.2)

that is

(16.6.3) th‘&$9  = 3 4),~~~)-. .
We now take F(z)  = e(mx).  In this event,

f(n) = c,(m)

by (16.6.1),  while s(n) = 2
l$h$n

which is n or 0 according as n / m or n[m.  Hence (16.6.2) becomes

Another simple expression for c,(m) is given by
THEOREM 272. If (n,m)  = a and  n = aN,  then

By Theorem 271,

= 2 @(NC)  = 2  %p(Nc).
cd=a cla

Now à = I~(N)~(C)  or 0 according as (N, c) = 1 or not. Hence

c,(m) = ap(N) 2 q = ar(N)(l-  xj+ zP--,-...),
cla

(c,N) = 1
where these sums run over those different p which divide a but do not
divide N. Hence

Q4 = aAN)  rr (1 -k).
But, by Theorem 62,

~la,~,l’N

and Theorem 272 follows at once.
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When m = 1, we have c,,(l) = p(n), that is
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(16.6.4)

(h,n)  = 1

16.7. The functions  d(n) and <ai.  The function d(n) is the
number of divisors of n, including 1 and n, while uk(n)  is the sum of the
kth powers of the divisors of n. Thus

Uk@)  = &dk9 4%) = &h

and d(n) = a,(n). We Write  u(n) for o,(n), the sum of the divisors of n.

I f n = pFp%...pp,

then the divisors of n are the numbers

p:lp$...pp,

where 0 < b,  < a,, 0 < b,  < a2, . . . . 0 < b,  < al.

There are (al+l)(a,+l)...(al+l)
of these numbers. Hence

THEOREM 273: d(n) = n (ai-il).
i=l

More generally, if k > 0,

uk(n)  = & ,$,  . . . b~op:lkpb,.k...pP’k  = ~~~(l+P:+P$+...+PC”).
l

Hence

THEOREM 274:

In particular,

THEOREM 275: u(n) = n r=).
z

16.8. Perfect numbers. A Perfect  number is a number n such
that u(n) = 2n. In other words a number is Perfect  if it is the sum of
its divisors other than itself. Since 1+2+3  = 6, and

1+2+4+7+14  = 28,

6 and 28 are Perfect  numbers.
The only general class  of Perfect  num’bers known occurs in Euclid.

THEOREM 276. If P+l-  1 is prime, then 2n(2n+1- 1) is Perfect.
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Write Zn+l-l  = (p, N = 2np.  Then, by Theorem 275,

a(N) = (2”+l-l)(p+l)  = 211+y2n+1-  1) = 2x,

SO that N is perfect.
Theorem 276 shows that  to every Mersenne prime there corresponds

a Perfect  number. On the other hand, if N = 2”~  is Perfect,  we have

u(X) = (2n+l-l)(p+l)  = 2”+lp

and SO p = 2”+‘-1.

Hence there is a Mersenne prime corresponding to any  Perfect  number
of the form 2np. But we cari  prove more than this.

THEOREM 277. Any ecen  Perfect  number is a Euclid number, that is to
say  of the form 2n(2n+1-l), where 2n+1-l is prime.

We cari  write any such number in the form N = 2Qb,  where n > 0
and b is odd. By Theorem 275, u(n) is multiplicative, and therefore

a(N) = a(2”)a(b) = (2n+‘-  l)o(b).

Since  N is Perfect, u(N)  = 2Y = Zn+lb;

and SO
b pH-  1

- - -
o(b) 2n+1

The fraction on the right-hand side  is in its lowest terms, and therefore

b = (2n+‘-1)c, u(b) = 2n+lc,

where c is an integer.
If c > 1, b has at least the divisors

b,  c,  1,
SO that u(b) > b+c+  1 = 2n’~1c+  1 > 2n+1c  = u(b),

a contradiction. Hence c = 1,

N = 2y2”+1-1),

and u(2n+l-1)  = 211+1*

But, if 2n+1-l  is not prime, it has divisors other than itself and 1,  and

u(2n+l-l)  > 2n+l.

Hence 2n+1-1  is prime, and the theorem is proved.
The Euclid numbers corresponding to the Mersenne primes are the

only Perfect  numbers known. It seems probable that there are no odd
Perfect  numbers, but this has not been proved. The most that is known
in this direction is that no odd Perfect  number cari  have less than six
different prime factors or be less than 14 x 1014.
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16.9. The function  r(n). We  define  r(n) as the number of repre-
sentations of n in the form

n  =  A2+B2,

where A and B are rational integers. We Count  representations ats

distinct even when they differ only ‘trivially’, i.e. in respect of the sign
or order of A and B. Thus

0 = 02+02, r(0) = 1;

1 = (-&1)“+02 = 02+(*1)2, r(1) = 4;

5 = (&2)2+(&1)2  = (*1)-+(&2)2, r(5) = 8.

We know already (§ 15.1) that r(n) = 8 when n is a prime 4m+l;
the representation is unique apart  from its eight trivial variations. On
the other hand, r(n) = 0 when n is of the form 4m+3.

We define  x(n), for n > 0, by

x(n) = 0 (2 I nL x(n.)  = (-l)J(n-i) (x/4%).

Thus x(n) assumes the values 1, 0, - 1, 0, l,...  for n =I  1, 2, 3 ,...  . Since

i(nn’-l)-$(n-l)-i(n’-1)  = &(n-l)(n’-1)  E 0 (mod2)

when n and n’ are odd, x(n) satisfies

x(nn’)  = x(n)xW)
for a11  n and n’. In particular x(n) is multiplicative in the sense of S 5.5.

It is plain that, if we Write

(16.9.1) a(n)  = d& x(4,
then

(16.9.2) a(n)  = 4(n)-4(n),
where d,(n) and d,(n) are the numbers of divisors of n of the forms
4m+  1 and 4m+  3 respectively.

Suppose now that

(16.9.3) n = 2”N  = +v  = 2a n p’ n qs,

where p and q are primes 4mfl and 4m+3  respectively. If there are
no factors q, SO that nq” is ‘empty’, thcn  we define  Y as 1. Plainly

6(n)  = S(N).

The divisors of N are the terms in the product

(16.9.4j I-I (l+P+...+P’)  Il-  (lfq+.*.+q”).
A divisor is 4m+  1 if it contains  an even number of factors q, and 4m+3

5591 R
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in the contrary case. Hence  S(N) is obtained by writing 1 for p and
-1 for q in (16.9.4); and

(16.9.5) S(N)  = n (r+l)  n (1+(2-1)s),
If any  s is odd, i.e. if Y is not a square, then

S(n) = S(N) = 0;
while S(n) = S(N) = n (r+l)  = c&)
if Y is a square.

Our abject is to prove

THEOREM 278: 1f  n > 1, then

r(n) = 46(n).

We have therefore to show that r(n) is 4c&) when v is a square, and
zero  otherwise.

16.10. Proof of the formula for r(n). We write (16.9.3) in the
form n = {(lfi)(l-i)}”  n {(a+bi)(a-bi))‘l-Tq*,
where a and b are positive and unequal and

p = a2fb2.
This expression of p is unique (after 9 15.1) except  for the order of a
and b. The factors

lfi, et& q
are primes of k(i).

I f n = A2+B2  = (A+Bi)(A-Bi),

then
A+Bi = i”(l+i)al(l-i)“a n {(a+bi)rl(a-bip) n q”‘,

A - B i  = i-“(l-i)“l(l+i)=z  n ((a-bi)‘;(a+bi)‘-} nq”Z,
where

t = 0, 1, 2, or 3, ffl+%  = 01, r1+r‘2  = r> s,+s,  = s.
Plainly si = s2,  SO that every s is even, and v is a square. Unless this
is SO there is no representation.

We suppose then that
vgj-qS=~q%

is a square. There is no choice  in the division of the  factors q between
A+ Bi and A- Bi. There are

4(afl) I-I (r+l)
choices  in the division of the other factors. But

l-i .
l-?-i
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is a unity,  SO that a change in 01~  and 01~  produces no variation in A

and B beyond that produced by variation of t.  We are thus left with

4  II  (rfl) =  4d(p)

possibly effective choices, i.e. choices which may  produce variation in
A and B.

The trivial variations in a representation n = AZ+ B2 correspond
(i) to multiplication of A+ Bi by a unity and (ii) to exchange of A+ Bi
with its conjugate. Thus

l(A+Bi) = A+B:, i(A+Bi) = -B+Ai,
i2(A$-Bi)  =  - A - B i , i3(A+Bi)  =  B - A i ,

and A- Bi, -B-Ai, -A+ Bi, BfAi  are the conjugates of these four
numbers. Any change in t varies the representation. Any change
in the rl  and r2 also  varies the representation, and in a manner not
accounted for by any change in t; for

i”(l+i)=l(l-i)“z  n {(a+bi)h(a-bi)Q}

= &‘(l+i)~i(l-i)Ué  n {(a+&)‘+-b)‘8)

is impossible, after Theorem 215,  unless rl  = r;  and r2 = ri.t There
are therefore 4d(p) different sets of values of A and B, or of representa-
tions of n; and this proves Theorem 278.

NOTES ON CHAPTER XVI

§ 16.1. The argument follows Polya and Szegô, ii. 119-20, 326-7.
9%  16.3-5. The function  p(n)  occurs implicitly in the work of Euler as early  as

1748, but Mobius, in 1832, was  thé first to investigate its properties systematically.
See Landau, Handbuch, 567-87 and 901.

3 16.6. Ramanujan, Collected  pupers,  180. Our method of proof of Theorem 271
was  suggested by Professor van der Pol. Theorem 272 is due to Holder,  Prace
Mat. Fiz.  43 (1936),  13-23. See also  Zuckermann, American  Math. Mmthly,  59
(1952),  230 and Anderson and Apostol, Duke Math. Jouez.  20 (1953),  211-16.

$3  16.7-8. There is a very full account  of the history of the theorems of these
sections in Dickson,  History,  i, chs. i-ii. For the theorems referred to at the end
of 5 16.8, see Kanold, Joum.für  Math. 186 (1944),  2529  and Kühnel, Math. Zeit.
52 (1949),  202-l 1. We have to thank Mr. C. J. Morse for pointing out an error in
our earlier proof of Theorem 277.

5 16.9. Theorem 278 was  first proved by Jacobi by means  of the theory of
elliptic functions.  It is, however, equivalent to one  stated by Gauss, D.A., 3 182;
and there had been many incomplete  proofs or statements published before. See
Dickson,  History, ii, ch. vi, and Bachmann, Niedere Zahlentheorie, ii, ch. vii.

7 Change of ri  into ra and r,  into rl (together with corresponding changes in t, a,, ut)
changes A + Bi  into its conjugate.
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GENERATING FUNCTIONS OF ARITHMETICAL FUNCTIONS

17.1. The generation of arithmetical functions  by means of
Dirichlet series.  A Dirichlet  series  is a series  of the form

(17.1.1) F(s)  = 2 2.
n=1

The variable s may  be real or complex, but here we shall be concerned
with real values only. F(s), the sum of the series,  is called the generating
function  of OT,.

The theory of Dirichlet series,  when studied seriously for its own
sake, involves many  delicate questions of convergence. These are mostly
irrelevant here, since  we are concerned primarily with the forma1 side
of the theory; and most of our results could be proved (as we explain
later in $ 17.6) without the use of any  theorem of analysis or even the
notion of the sum of an infinite  series. There are however some theorems
which must be considered as theorems of analysis; and, even when this
is not SO, the reader Will  probably find it easier to think of the series
which occur as sums in the ordinary analytical sense.

We shall use the four theorems which follow. These are special  cases
of more general theorems which, when they occur in their proper places
in the general theory, cari  be proved better by different methods. We
confine ourselves here to what is essential for our immediate purpose.

(1) If 2 ~l,n-~  is absolutely convergent for a given s, then it is
absolutely convergent for a11  greater s. This is obvious because

Ici,n-8*l  < /ci,nP11

when n 3 1 and s2 > si.
(2) If 1 ~r,n-8  is absolutely convergent for s > s,,,  then the equation

(17.1.1) may  b e 1d’ff erentiated term by term, SO that

(17.1.2) F’(s) = - 2 s!F$??

for s :> sO.  TO prove this, suppose that

sg < s,+s  = Sl  <,s  < sp

Then logn < K(Zi)ds, where K(S) depends only on 6,  and
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for a11 s of the interval  (sr,  .s&.  Since

245

is convergent, the series  on the right of (17.1.2) is uniformly convergent
in (sl,  sz),  and the differentiation is justifiable.

(3) If F(s) = 2 0r,n-8  = 0

for s > sO, then 01,  = 0 for a11 n.  TO prove this, suppose that a,,,  is the
fi& non-zero coefficient. Then

(17.1.3) 0 = F(s) = u,n-+ +?$!+~+~(!!!!!)-8+...]

= LX~W~{~+G(~)},

say.  If s0 d s1 < s, then

and

which tends to 0 when s + CO.  Hence

Il+G(s)l  > 4
for sufficiently large s; and (17.1.3) implies or,  = 0, a contradiction.

It follows that if z a,n-8  = z&n-8

for s > sl, then OI~  = 8, for a11  n. We refer to this theorem as the
‘uniqueness theorem’.

(4) Two absolutely convergent :Dirichlet  series  may  be multiplied in
a manner explained in 5 17.4.

17.2. The zeta function. The simplest,  infinite  Dirichlet series  is

(17.2.1) C(s)  =:  2 ;.
n-1

It is convergent for s > 1, and its sum t(s) is called the Riemann zeta
function. In particulart

(17.2.2) C(2) = 7 I = f.
,fl  n2

t 5(2n) is a rational multiple of ren  for a11 positive integral  n. Thus c(4) = &A’,
and  generally

5(2n)  = 3 TF,

where B, ia  Bernoulli’s  number.
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If we differentiate (17.2.1) term by term with respect to S, we obtain

THEOREM 279: C’(s)  = - 2 l? (s > 1).
1

The zeta function is fundamental in the theory of prime numbers.
Its importance depends on a remarkable identity discovered by Euler,
which expresses the function as a product extended over prime numbers
only.

THEOREM 280. ifs > 1 then

Since  p > 2, we have

(17.2.3)
1- = I+p-“+p-2”+...

1 -p-s

for s > 1 (indeed for s > 0). If we take p = 2, 3,...,  P, and multiply
the series  together, the general term resulting is of the type

2-aas3-a8s~~~p-aps  = n-s,

where n = 2aa3a3..  . P% (a, 3 0, us > 0 >...>  up  > 0).

A number n Will  occur if and only if it has no prime factors greater
than P, and then, by Theorem 2, once only. Hence

I-r
1

.p<p  l-FS
- = &)n-a,

the summation on the right-hand side  extending over numbers formed
from the primes up to P.

These numbers include a11 numbers up to P, SO that

0 < 5 nF-- x n-8 < f$ n-8.
n=1 (P) P+l

and the last sum tends to 0 when P -+ CO.  Hence

zF-+ = lim 2 n-* = lim n.-J--
P-x0  (P) P-+00 p<p  l-P-s’

the result of Theorem 280.
Theorem 280 may be regarded as an analytical expression of the e

fundamental theorem of arithmetic.

17.3. The behaviour of l(s) when s -f 1. We shall require later
to know how c(s)  and c’(s) behave when s tends to 1 through values
greater than 1.
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We  cari  Write  c(s)  in the form

(17.3.1) c(s)  = 7 n-s  = fkdx + $ I;n-s-x-8)  dx.
1 n

m

Here
s

x-8dx=  ’
s - l ’

1
since  s > 1. Also
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0 < n-s-x-s  = sst-s-1  & < .f
J ns’n

ifn < x < n+l,andso
n+1

0  < [
w

(n-s--x-8) dz < 5;

and the last term in (17.3.1) is positive and numerically less  than
s 2 n-2.  Hence

THEOREM 281: t-(s)  = LIï + O(l).

Also 1%5(S)  = logsJ-&+log{l+o(s-l)~,

and SO

THEOREM 282: log[(s)  = log~&l+o(s-l).

We  may  also argue with

-c’(s) = $ n-8logn  f rx-slogx dz + $m/l(n-~logn-x-~logx)  dx
1 n

much  as with c(s), and deduce

THEOREM 283 : 5’(s)  = -,~2+o<l>.

I n  particular  1

This may also  be proved by observing that, if 8 > 1,

(1-2’-s)5(9)  = 1-s+2-S+3-8+...-2(2-8+4-S+6-‘+...)

zz l-s-2-s+3---...  ,

and that the last series converges to log 2 for 8 = 1. Hencet

(S--l){(S) = (l-21-.)&9&+log2&=  1.

t We assume here that lirn~~=~R
s-t1

whenever the series  on the right is convergent, a theorem not included in those of 5 17.1.
We do not prove this theorem beceuse we require it only for an alternative proof.
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17.4. Multiplication of Dirichlet series.  Suppose that we are
given a finite  set of Dirichlet series

(17.4.1) 2 a,n-S, zfinn-8, x ynn-$, . . .  .

and that we multiply them together in the sense of forming a11 possible
products with one  factor  selected from each  series.  The general term
resulting is ciuu-8.p”v-~.yww-~...  = ~uBzlyw...n-~,
where n = uvw... . If now we add together a11 terms for which n has
a given value, we obtain a single term xnn-8,  where

(17.4.2) Xn = 1 %&Yw-*uvw...=n

The series  2 xn  n-8, with xn defined by (17.4.2),  is called the forma1
product of the series  (17.4.1).

The simplest case is that in which there are only two series  (17.4.1),
2 ~l,u-8  and zfivv-8. If (changing our notation a little) we denote
their forma1 product by 2 ynn-8,  then

(17.4.3) Yn  =uuLpuSa  = &%Pnid  -- &%!dPd>

a sum of a type which occurred frequently in Ch. XVI. And if the
two given series  are absolutely convergent, and their sums are F(s) and
G(s), then

F(s)G(s) = z CU,U-~  z /$v-~  = 2 ci,&(uv)-8
%U

= z ne8  2 4%  = 1 y n n-8,UV=12
since  we may  multiply two absolutely convergent series  and arrange
the terms of the product in any  order that we please.

THEOREM 284. If the series

F(s) = 2 cuzLu-+, G(s) = 2 fl, v-8

are absolutely convergent, then

F(~)G(S)  = I: ynn-8,
where yn  is dejîned  69 (17.4.3).

Conversely, if H(s) = 1 8,n-8  = F(~)G(S)

then it follows from the uniqueness theorem of 5 17.1 that 6, = yn.
Our definition of the forma1 product may  be extended, with proper

precautions,  t’o  an infinite  set of series. It is convenient to suppose that

a1 = /3, = y1  = . . . = 1.

Then the term %B,~YUY
in (17.4.2) cont’ains  only a finite  number of factors which are not 1,
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and we may  define  xn.  by (17.4.2) whenever the series  is absolutely
convergent.?

The most important case is that in which f(1)  = 1, f(n) is multi-
plicative, and the series  (17.4.1) are

(17.4.4) ~+f~P~p-“-tf~P”~p-““+...+f~p”~p-””-1-...
for p = 2, 3, 5,...; SO that, for example, 01~  is f(29 when u = 2a  and 0
otherwise. Then, after Theorem 2, every n occurs just once as a product
uv’w... with a non-zero coefficient, and

Xn = f(Pl)f(Pg”L  = f(n)
when n = p~pgz . . . . It Will  be observed that the series  (17.4.2) reduces
to a single term, SO that no question of convergence arises.

Hence
THEOREM 285. If!(l)  = 1 andf(n)  is multiplicative, then

xf  (?t)n-8
is the forma1  product of the series  (17.4.4).

In particular, 2 n-8 is the forma1 product of the series

l+p-“+Jp-2”+...  .

Theorem 280 says in some ways more than this, namely that c(s),
the sum of the series  2 n-8 when s > 1, is equal to the product of the
sums of the series  1 +p-“+~-~“.  . . . The proof  cari  be generalized to caver
the more general case considered here.

THEOREM 286. If f(n) satisfies  the conditions of Theorem 285, and

(17.4.5) I: If (n)P
is convergent, then

F(s)  = xf(n>n-8  = F {1+f(p)p-8+f(p2)p-29+...}.

We  Write F,(s)  = ~+f~p)p--8+f~p21p-28+~~~;
the absolute  convergence of the series  is a corollary of the convergence
of (17.4.5).  Hence, arguing as in 9 17.2, and using the multiplicative
property off(n), we obtain

Since

the result follows as in 4 17.2.
t We must assume a&wZute  convergence because we bave not specified the order in

which the terms are to be taken.
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17.5. The generating functions of some special arithmetical
functions. The generating functions of most of the arithmetical func-
tions which we have considered are simple combinations of zeta functions.
In this section we work out some of the most important examples.

THEOREM~~~: m An)
c -$- (8 > 1).
n=1

This follows at once from Theorems 280, 262, and 286, since

& = TJ (1-P) = TT  {1+~(P)P-“+~(P2111-“+...}  =ng,p(n)n-s.

THEOREM 288: as- 1)
5(s)=

* +(n)
c 7 (8 > 2).
n=1

By Theorem 287, Theorem 284, and (16.3.1)

as-l)5(s) =~Q1% =~~p(~)  =pY
T H E O R E M 289: (2(s) = 2 9 (s > 1).

n=1

THEOREM 290: Qs)((s-1) = 2 $) (s > 2).
n=1

These are special cases of the theorem
THEOREM 291:

(s > 1, s > k+l).
n=1

In fact

zJs)lJs-k)  = 2 $2 ; = 2 J-Cd” = -g +,
n=1 ?Z=l

by Theorem 284.
n=l dln n=1

THEOREM 292: u,-,(m) m c h)
m8-15(s)= c -+ (s > 1).

n=1
By Theorem 271,

and SO

n=l n=l dlm,dd’=n
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Finally

In particular

THEOREM 293:
c

c,(m) ._ 6 u(m)
-TF--,z-Z’n

17.6. The analytical interpretation of the Mobius formula.
Suppose that

s(n) = p4,

and that P(s) and G(s) are the generating functions  of f(n) and g(n).
Then, if the series  are absolutely convergent, we have

F(s)Qs) = Cf$C ; = 2 -&(d)  = 2 Eg = G(s);
?C=l n=1 n=:1 dln n-1

and therefore

where h(n) = Lg(d)p “d .
d/?L 0

It then follows from the uniquenes,s  theorem of 3 17.1 (3) that

h(n)  == f(n),
which is the inversion formula of Mobius (Theorem 266). This formula
then appears as an arithmetical expression of the equivalence  of the
equations

G(s)  = S(sV’(s), F(s) = c(s)
5(s) *

We  cannot  regard this argument, as it stands, as a proof  of the
Mobius formula, since  it depends upon the convergence of the series
for F(s). This hypothesis involves a limitation on the order of magni-
tude off(n), and it is obvious that such  limitations are irrelevant. The
‘real’  proof  of the Mobius formula is that given in 5 16.4.

We may, however, take this opportunity of expanding some remarks which
we made in 3 17.1. We could  construct a forma1  theory of Dirichlet series  in
which ‘analysis’ played no part. This theory would include  a11  identities of the
‘Mobius’ type, but the notions of the sum of an infinite  series,  or the value of an
infinite  product,  would never  occur. Wts shah  not attempt to construct such  a
theory in detail, but it is interesting to consider how it would begin.

We denote  the forma1  series  1 u,n+  by A, and Write
A = x alLn-S.
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In particular we write

I = 1. 1-8+O.2-8+O.3-5+  ,..,

2 = l.l-s+1.2-8+1.3-~+  . . . .

M = ~(I)1-“+~(2)2-“+~(3)3-s+...  .

BY A = B

we mean  that a, = bn  for a11  values of n.

The equation AxB=C

means  that C is the forma1 product of A and B, in the sense of 3 17.4. The
definition may be extended, as in 3 17.4, to the product of any finite  number of
series,  or, with proper precautions,  of an infinity. It is plain from the definition
that

AxB=  BxA, AxBxC=(AxB)xC=Ax(BxC),

and SO on, and that AxI=A.

The equation AxZ=B

means  that b, = 2 ad.
dln

Let us suppose that there is,a  series L such  that

ZxL=  1.

Then A  =  AxI  =  Ax(ZxL)  =  (AxZ)xL  = BxL,

i.e. as = $$&dd.

The Mobius formula asserts that 1, = p(n),  or that L = M,  or that

(17.6.1) ZxM  = I;

and  this means  that p(d)

is 1 when n = 1 and 0 whenn > 1 (Theorem 263).
We may prove this as in $ 16.3, or we may continue as follows. We write

P, = l-p-3, Qp = 1 +p-s+p-2s+  . . . .

where p is a prime (SO that PD,  for example, is the series A in which a, = 1,
ap = - 1, and the remaining coefficients are 0); and calculate the coefficient of
n-8 in the forma1 product of Pp and Qp. This coefficient is 1 if n = 1, l-l = 0
if n is a positive power of p, and 0 in a11  other cases; SO that

P,xQP  = I
for every p.

The series  Pp, Qp, and I are of the special  type considered in 3 17.4; and

Z = n: Qp, M = l-JPp,,

ZxM  = I-I QpxIIPp,

while l-J(Q,xP,)=nI=I.

But the coefficient of n@ in
(QZ~Q3~QS~...)~(P2~P3~P5~...)

(a product of two series of the general type) is the same  as in

QzxP,xQ,xP,xQ,xP,x...

or in (Qz x Pz) x (QS  x $1  x (QS  x PA x . . .
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(which are each products of an infinity  of series  of the special type); in each
case the xn  of 8 17.4 contains  only a finite number of terms. Hence

It is plain that this proof  of (17.6.1) is, at bottom, merely a translation into
a different language of that of $ 16.3; and that, in a simple case like this, we
gain nothing by the translation. More complicated formulae become much  easier
to grasp and prove when stated in the language of infinite series  and products,
and it is important to realize that we cari  use it without analytical assumptions.
In what follows, however, we continue to use the laquage  of ordinary analysis.

17.7. The function A(n). The function A(n), which is particularly
important in the analytical theory of primes, is defined by

A(n) = logp (n = p”),

A(n) = 0 (n # P”I7
i.e.  as being logp when n is a prime p or one  of its powers, and 0
otherwise.

From Theorem 280, we have

1%5(S)  = p!3 $+ .
P ( 1

Differentiating with respect to s, and observing that

we obtain

(17.7.1) C’(s)  _ kP- - -
i-(s) cp p8_1’

The differentiation is legitimate because the derived series  is uniformly
convergent for s > 1+8  > 1 .t

We may  Write  (17.7.1) in the forrn

and the double series  2 2 p-mslogp  is absolutely convergent when
s > 1. Hence it may  be written as

pzp-mslogp  ==  1 A(n)n-s,

by the definition of A(n).

THEOREM  294: -$f = 2 A(:n)n-8 (s > 1).

-l’(s) = 2 !?g,
?L=l

t The nth prime p, is greater than n,  and ,the  series may  be compared  with C n-8  log n.
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by Theorem 279, it follows that

[Chrtp.  XVII

and
n=1 n=l n=1 n=1

From these equations, and the uniqueness theorem of 5 17.1, we deducet

THEOREM 295: A(n) = 2 p(z)log d.
dln

THEOREM 296: Qn = d~44.

We may  also prove these theorems directly. If n = n pa, then

p(d) =r;lf%P.

The summation extends over a11 values of p, and a11 positive values of
(Y  for which p@ 1 n, SO that logp occurs a times. Hence

2 logp = ;C  alogp = log n pa = logn.
P%

This proves Theorem 296, and Theorem 295 follows by Theorem 266.

Again,

SO that

Hence, as before, we deduce

THEOREM 297: -An)logn = c $$W.
dln

Similarly

and from this (or from Theorems 297 and 267) we deduce

THEOREM 298: 44 = - &Wogd.

17.8. Further examples of generating functions.  We add a few
examples of a more miscellaneous character. We define  d,(n) as the
number of ways of expressing n as the product of k positive factors
(of which any  number may  be unity), expressions in which only the

t Compare 5 17.6.
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order of the factors is different being regarded as distinct. In particular,
d,(n) = d(n). Then

THEOREM 299: p(s) = p$ (s > 1).

Theorem 289 is a particular case of this theorem.

Again

- * h(n)ZZZ
c ->ns
n=1

where X(n) = (- l)p, p being the total number of prime factors of n,
when multiple factors are counted multiply.  Thus

THEOREM 300: 5(2s)=
c

X(n)
5(s)

-8 (s > 1).

Similarly we cari  prove

THEOREM 301:

where w(n) is the number of different prime factors of n.
A number n is said to be quudratfreit  if it has no squared factor. If

we Write  q(n) = 1 when n is quadratfrei, and q(n) = 0 when n has a
squared factor, SO that q(n) = Ip(n)j,  then

50 = I--I  (AIE$) = p (l.+p-“)  = 2 9
5w 3,

(s > l),
n=1

by Theorems 280 and 286. Thus

THEOREM 302:

5(s) Oo 4(n)50=n=1~  =n=l n*z cO3 ICLol (s > 1).

More generally, if q,Jn)  = 0 or 1 according as n has or has not a kth
power as a factor, then

THEOREM 303: as) - Oo $0 (s > 1)
cWs)  n=l  ns ’

7 WC bave already used this word  in 5 2.6 (p. 16) ; there is no convenient  English
word.
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Another example, due to Ramanujan, is

[Chap. XVII

THEOREM 304: 54(s)=
c

m (d(n))2  (s > 1).
a24 n=l ns

This may  be proved as follows. We have

Now

Hence

1 -p-25

I-I 1 +P-”
( l - p - “ ) ”  =  î, (l-p-y

1+x~ = (l+x)(l+3~+6~~+,..)
(l-x)3

= 1+42+9x2+... =l&z+~)2ç”.

g = 9 (l~o(~+l)2P-“).

The coefficient of n-s,  when n = pl p$ . . . . is

(z1+1)2(l,+1)2...  = {4n)}2,
by Theorem 273.

More generally we cari  prove, by similar reasoning,

THEOREM 305. Ifs, s-a, s-b, and s-a-b are aZZ  greater than 1, then

5(s)5(s-a)5(s-b)5(s-a-b)  = m o,(n)a,(n)
5(2s-a-b) c ns *

n=1

17.9. The generating function of r(n). We saw in 3 16.10 that

r(nl  = 4ds~(d),

where  x(n) is 0 when n is even and (- l)h(n-l)  when n is odd. Hence

cT = 4c-$c$ = 45(s)L(s),

where
ifs > 1.

L(s) = l-s-3-8+5-8-...,

THEOREM 306:
c

r(n)T- = ~C(~)L(S)  (8 > 1).

The function q(s)  = 1-s-2-s+3-s-...

is expressible in terms of l(s) by the formula

7)(s)  = (1-21-S)&);

but L(s), which cari  also be expressed in the form

Us) = TT ( l-xfp)p-s)~P
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is an independent function. It is the basis of the analytical theory of
the distribution of primes in the progressions 4m+  1 and 4m+3.

17.10. Generating functions of other types. The generating
functions discussed in this chapter have been defined by Dirichlet
series;  but any function

F(s) = 1 cu,u,(s)
may  be regarded as a generating function of CX,.  The most usual  form
of U,(S)  is U,(s)  =Z  e+s,
where X, is a sequence  of positive numbers which increases steadily to
infinity. The most important cases are the cases h,  = log n and h, = n.
When h,  = log n, u,(s) = n-8, and the  series  is a Dirichlet series.  When
A,  = 12,  it is a power series  in

x ;= e-8.

Since m-8.  n-S := (mn)-8,

and p.xn  := pin,

the first type of series  is more important in the ‘multiplicative’ side  of
the theory of numbers (and in particular in the theory of primes). Such
functions as

Z: An)xn, 2 +(n)x”, 1 Nn)xn
are extremely difficult  to handle. But generating functions defined by
power series  are dominant in the ‘a,dditive the0ry.t

Another interesting type of series  is obtained by taking
e-n.a X”

u,(s) = l-e” = -*1-x”r

We  Write

and disregard questions of convergence, which are not interesting here. 8
A series  of this type is called a ‘Lambert series’.  Then

tihere b, = 1 a,.
?%IN

This relation between the a and b is that considered in $$  16.4 and 17.6,
and it is equivalent to

S(s)f(s)  = g(s),
wheref(s)  and g(s) are the Dirichlet’  series  associated with a, and b,.

t See Chs. XIX-XXI.
$ Al1  the series  of this kind which we  consider me absolutely convergent when

O<z<l.
5591 s
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THEOREM 307. If

f(s) = I: %n-8, g(s)  = 2 b,n-*,

[Chap. XVII

then F(x) = -&$--+  = zbb,xn

if and only  if mm)  = g(s).

Iff(s) = 2 p(n)n-a, g(s) = 1, by Theorem 287. Iff(s) = 1 $(n)n-8,

g(s)  = as-1)  = c;,
by Theorem 288. Hence  we derive

THEOREM 308:

THEOREM 309: * $(4x"
c

---ZZZ
1  l-2” (l-X)2-

Similarly, from Theorems 289 and 306, we deduce

THEOREM 310:

THEOREM 311:

Theorem 311 is equivalent to a famous  identity in the theory of elliptic
functions,  viz.

THEOREM 312:

(1+2x+2x4+2x9+...)9  = 1+4
(
&&9+lT;5~-  . . .

)
.

In fact,  if we square the series

1+2x+2x4+2x9+...  = ~a+,
-cc

the coefficient of xn is r(n), since  every pair (m,, m,)  for which
rnf+rn?j  = n contributes  a unit to it.t

t Thus 5 arises from  8 pairs, viz.  (2, l), (1, 2), and those derived by changes of sign.
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NOTES  ON C~$APTER  xv11
5 17.1. Therc is a short account of the analytical theory of Dirichlet series  in

Titchmarsh, Theory offunctions,  ch. ix; and fuller accounts, including thc theory
of series  of the more general type

z a,, e-L8

(referred to in § 17.10) in Hardy and Riesz,  The  general theory of Dirichlet’s  series
(Cambridge Math. Tracts, no. 18, 1915), and Landau, Handbuch, 103-24, 723-75.

5 17.2. There is a large literature concerned  with the zeta function and its
application to the theory of primes. Sec:  in particular the books of Ingham and
Landau, and Titchmarsh, The Riemann zeta-function  (Oxford, 1951).

For the value of [(Zn)  see Bromwich, Infinite  series,  ed. 2, 298.
5 17.3. The proof  of Theorem 283 depends on the formulae

0 < n-alogn-z-slogz  = fl-l+l(slogt-  1) dt < slog(n+l),
n

valid for 3 < n < z < n+l  ands > 1.
There are proofs of the theorem referred to in the footnote to p. 247 in Landau,

Handbuch, 106-7, and Titchmarsh, Theory of functions,  289-90.
§$  17.5-10. Many of the identities in these sections, and others of similar

character, occur in Polya and Szego,  ii. 123-32, 331-9. Some of them go back
to Euler. We do not attempt to assign them systematically to their discovcrcrs,
but Theorems 304 and 305 were first stated by Ramanujan in the Messenger of
Math. 45 (1916), 81-84 (CoZZecti papera, 133-5 and 185).

$ 17.6. The discussion in small print is the result of conversation with Professor
Harald Bohr.

$ 17.10. Theorem 312 is due to Jacobi,  Fundamenta noua (1829),  $ 40 (4) and
8 65  (6).



XVIII

THE ORDER OF MAGNITUDE OF ARITHMETICAL FUNCTIONS

18.1. The order of d(n). In the last  chapter we discussed forma1
relations satisfied by certain arithmetical functions, such  as d(n), u(n),
and 4(n). We now consider the behaviour of these functions for large
values of n, beginning with d(n). It is obvious that d(n) > 2 when
n > 1, while d(n) = 2 if n is a prime. Hence

THEOREM 313. The lower  limit  of d(n) as n + CO is 2:
lim d(n) = 2.
n-xc

It is less trivial to find any Upper  bound for the order of magnitude
of d(n). We first prove a negative theorem.

THEOREM 314. The order of magnitude of d(n) is sometimes larger than
that of any  power of logn: the equation
(18.1.1) d(n) = O{(logn)“}

is false for every A.?

If n = 2m,  then log nd(n) = m+l  - -.
log 2

If n = (2.3)m,  then d(n) = (m+I)z-

and SO on. If
and

l<A<l+l
n = (2.3...p1+Jm,

log n
1

If1
then cl(n) = (m+l)“+l  N

logP* 3...PI,,)
> K(log  n)l+l,

where K is independent of n. Hence (18.1.1) is false for an infinite
sequence  of values of n.

On the other hand we cari  prove
THEOREM  315: d(n) = O(n*)

for a11 positive 6. ’

The assertions that d(n) = O(n*), for a11 positive 6,  and that
d(n) = o(n8),  for a11 positive 6,  are equivalent, since  ns’  = o(d)  when
0 < 6’ < 6.

We require the lemma

THEOREM 316. If f(n) is multiplicative, and f (p”)  -+  0 as pm -f 00,
then f(n) + 0 as n -+  CO.

t The symbols 0, o, - were  defined in 5 1.6.
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Given any positive E, we have

2 6 1

(i) ~&P)I < A for all p and m,

(ii) If(p”>l  < 1 if  pm > B,

(iii) jf(pm)j  < E if  pm > N(E),

where A and B are independent of p, m, and E, and N(E)  depends on
E only. If n = p&T...p7,

then f(n)  = f(~?M~%.f(~i3
Of the factors pu, pu,,.., not more than C are less than or equal to
B, C being independent of n and E. The product of the corresponding
factors f(pa)  is numerically less than A”,  and the rest of the factors
of f(n) are numerically less than I.

The number of integers which cari  be formed by the multiplication of
factors pa < N(E) is M(E),  and every such  number is less than P(E),
M(c) and P(E)  depending only on E.  Hence, if n > P(E),  there is at
least one  factor pu of n such that pa > N(E)  and then, by (iii),

lf(P”:)I  < E*
It follows that If(n)1  < ACe
when n > P(c), and therefore that f(n)  -f 0.

TO deduce Theorem 315, we talref(n)  = n-%(n).  Thenf(n)  is multi-
plicative, by Theorem 273, and

when pm -+ 00. Hence f(n) -f 0 when n + 00,  and this is Theorem 315
(with o for 0).

We cari  also  prove Theorem 315 directly. By Theorem 273,

(18.1.2)

Since a6 log 2 < easlog2  = 2aa  < pas,

we have a+1--$-<1+&1+~
P P Slog2

We use this in (18.1.2) for those p which are less than 2118;  there are less
than 21i8 such primes. If p 3 21/“,  we have

PS > 2,
a+1 a+1--+2,<  1.



2 6 2 THE ORDER OF MAGNITUDE OF [Chap. XVIII

Hence

(18.1.3)
(kg)  < exp(z&)  = O(l).

This is Theorem 315.
We cari  use this type of argument to improve on Theorem 315. We

suppose E > 0 and replace 6 in the last paragraph by

o1  = (l+&P%2
loglogn .

Nothing is changed  until we reach  the final step in (18.1.3) since it is
here that, for the first  time, we use the fact that 6 is independent of n.
This time we have

(logn)l~(l+~~)loglogn Elog2logn
(1++)log22  ’ 2 1 0 g l o g n

for all n > no(c)  (by the remark at the top of p. 9). Hence

log d(n) < 01  log n + Elog2logn  = (l+~)log2logn
2 loglog n loglogn *

We have thus proved part of

THEOREM 3 17 : lim log d(n)loglog  n
logn

= log 2;

that is, if E > 0, then
d(n)  < 2U+dlOg  WX~Og  n

for a11  n > no(c)  and
(18.1.4) d(n) > 2(1-E)lOg  ~/lOglOg  1E

for an injlnity  of values of 12.

Thus the true ‘maximum order’ of d(n) is about
21og  n/loglog  Il*

It follows from Theorem 315 that

logd(n)  j  o
log n

and SO d(n) = nlOgW)ilW~  = ne-,

where E, + 0 as n -f CO.  On the other hand, since
21og  n/loglog n = nIog  2/loglog R

and loglogn tends very slowly to infinity, E, tends very slowly to 0.
TO put it roughly, d(n) is, for some n, much  more like a power of n
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than a power of logn. But this happens only very rarelyi ad, as
Theorem 313 shows, d(n) is sometimes quite  small.

TO complete the proof  of Theorem 317, we have to prove (18.1.4)  for
a suitable  sequence  of n. We take n to be the product of the first r
primes, SO that

n = 2.3.5.7...P, d(n) ZZZ  2r ZZZ  277(P),

where P is the rth prime. It is reasonable to expect that such a choice
of n will give us a large value of d’(n). The function

is discussed in Ch. XXII, where we shall prove (Theorem 414) that

9(x) > Ax
for some fixed positive A ad a11 x > 2.7. We  have then

AP < 8(P)  = 1 logp = logn,
/D  4 P

ad SO

n(P)log  P = log P 2 1 > I~(P)  = logn,
PGP

l o g  d ( n )  =  7r(P)log  2  > - -lognlog2 > log n log 2
log P loglog n -1og A

, (1-•)lognlog2
loglog n

for n > no(c).

18.2. The average order of d(n). If!(n) is an arithmetical func-
tion and g(n) is any  simple function of n such  that
(18.2.1) f(l)+fP)+...+fw - g(l)+...+g(n),
we say  that f(n) is of the average order of g(n). For many  arithmetical
functions,  the sum of the left-hantl  sicle  of (18.2.1) behaves much  more
regularly for large n than does  f(n) itself. For d(n), in particular, this
is true ad we cari  prove very preoise results about it.

THEOREM  318: d(l)+d(2)+...+d(n)  N nlogn.
12

Since logl+log2+...+logn  N I logt dt N nlogn,
1

the result of Theorem 318 is equivalent to

d(l)+d(e)+...+d(n)  PJ  log 1+log2+...+logn.

t See 5 22.13.
$ In fact, we prove (Theorem 6 and 420) that a(z)  -z,  but it is of interest that the

much simpler Theorem 414 suffices  here.
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We may  express this by saying

[Chap.  XVIII

THEOREM 319. The average  order  of d(n) is logn.

Both theorems are included in a more precise  theorem, viz.

THEOREM 320:

d(l)+d(a)+...+d(n)  = nlogn+(2y-l)n+O(A),

where y is Euler’s c0nstant.t

We  prove these theorems by use of the lattice L of Ch. III, whose
vertices  are the points in the (x, y)-plane with integral coordinates.
We denote by D the region in the Upper  right-hand quadrant contained
between the axes and the rectangular hyperbola xy = n. We Count  the
lattice points in D, including those on the hyperbola but not those on
the axes. Every lattice point in D appears on a hyperbola

xy=s  ( 1  <s<n);

and the number on suçh a hyperbola is d(s). Hence the number of
lattice points in D is d(l)+W)+...+d(n).

Of these points, n = [n] have the x-coordinate 1, [jn]  have the
x-coordinate 2, and SO on. Hence their number is

[n]+[i]+[:]+...+[f] =n(l+~+...+~)+W)  = nlogn+O(nL
since  the error involved in the removal of any  square bracket is less
than 1. This result includes  Theorem 318.

Theorem 320 requires a refinement of the method. We  Write

u  =  [dn],

SO that u2 = n+O(dn)  = ~+O(U)

and logu = log{2in+O(l)}  = &logn+O
( )
$ .

In Fig. 9 the curve  GEFH is the reotangular hyperbola xy = n,
and the coordinates of A, B, C, D are (0, 0), (0, u), (u, u), (w,  0). Since
(~+l)~  > n, there is no lattice point inside the small triangle ECF;
and the figure is symmetrical as between x and y. Hence the number
of lattice points in D is equal to twice the number in the strip between
AY  and DF, counting those on DF and the curve  but not those on

t In Theorem 422 WB  prove that

1+;+...+;-logn  = y+0  ; ,
0

where y is a constant, known aa  Euler’s constant.
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AY, less the number in the square ADCB, counting those on BC and
CD but not those on AB ad AD; ad therefore

p(z)  = 2([;]+[;]+...+[+2  = ?n(l+;+...+~)-n+o(?4.

Now

SO that

FIG. 9.

2
(
I+i+...+;

1
= 21ogu+2y+o  1 >

0U

&qZ)  = z~logu+(2y-I)n+O(u).+O(~)  = nlogn+(2y-l)n+O(dn).

Although 1 n
ii c

d(Z)  - logn,
1=1

it is not true that ‘most’ numbers n have about log n divisors. Actually
‘almost all’ numbers have about

(log n)b2 := (log n)‘6-.

clivisors. The average logn is produced by the contributions of the
small proportion of numbers with a,bnormally  large d(n).t

This may  be seen  in another wa,y,  if we assume some theorems of
Ramanujan. The sum d2(l)+...+d2(n)
is of order n(log n)2’-1  = n(log n)3;

d”(l)+...+dyn)

t ‘Almost ail’ is used in the sense  of $ 1.6. The theorem is proved in § 22.13.
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is of order n(logn)s’-1  = n(logn)‘;  and SO on. We should expect these
sums to be of order n(logn)z, n(log %)a,...,  if d(n) were generally of the
order of logn. But, as the power of d(n) becomes larger, the numbers
with an abnormally large number of divisors dominate the average
more and more.

18.3. The order of a(n). The irregularities in the behaviour of e(n)
are much  less pronounced than those of d(n).

Since 11 n and n 1 n, we have first
THEOREM 321: u(n) > n.
On the other hand,
THEOREM 322: u(n) = O(d+*)  for every positive 6.
More precisely,

THEOREM 323: lim u(n)
n loglog n

= ey.

We shall prove Theorem 322 in the next section, but must postpone
the proof  of Theorem 323, which, with Theorem 321, shows that the
order of u(n) is always ‘very nearly n’, to f 22.9.

As regards the average order, we have
THEOREM 324. The average order of u(n) is Qn2n.  More precisely,

a(l)+u(2)+...+u(n)  = &r2n2+O(nlogn).

For 4)+...+4n)  = XY,
where the summation extends over a11 the lattice points in the region
D of 5 18.2. Hence

&(l).= 5 2 Y =
2=1ybn/z .gf[nzl([3+1)

by (17.2.2),  and
n 1
c

- = O(logn).
x=1

Hence &u(Z)  = in2n2+O(nlogn).

In particular, the average order of u(n) is &r2n.t
a

t Since T; rn- )n".
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18.4. The order of +(n). The fUnction  +(n) is also comparatively
regular, ad its order is also always ‘nearly  n’. In the first place

THEOREM 325: 4(n) < n ifn > 1.

Next, if n = p”, ad p > lit-,  then

Hence

f)(n)  = n(l-:i)  > n(l-E).

THEOREM 326: j&k' = 1.
n

There are also two theorems for j)(n)  corresponcling to Theorems 322
ad 323.

THEOREM 327: mnl-8 + co  for every positive 6.

THEOREM 328: Em ~(nUo&g  n~- = e-Y.
n

Theorem 327 is equivalent to Theorem 322, in virtue of

THEOREM 329: A <  4nW)  <  ]
n2

(for a positive constant A).

TO prove the last theorem we observe that, if n = JJ pu,  then

ad

u(n) =
r-r

a+1-]
‘-: = n

I-I

1 -p-l-l

PI12  p-l && 1-p-l

d(n)  = n i’ (l-~-l).

Hence +M(n)- = IJ (l-P-a-‘),n2

which lies between 1 ad T]c (1-p-").t  It follows that u(n)/n  and
n/+(n) have the same  order of magnitude, so that Theorem 327 is
equivalent to Theorem 322.

TO prove Theorem 327 (and SO Theorem 322) we Write
,1-S

f(n) =,  S).

Then f(n) is multiplicative, ad SO, by Theorem 316, it is sufficient to
prove that

f (P”I + 0

t  By Theorem 280 and  (17.2.2),  we 888  th8t the A of Theorem 329 is  in fact
{c(2)}-’  = 6n-*.
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when pm -+  CO.  But

f& =pm(l-6)  = p
- d(P") ma  l-1 >frpm%al

( 1
p

We defer the proof  of Theorem 328 to Ch. XXII.

18.5. The average order of b(n). The average order of 4(n) is
6n/n2.  More precisely

THEOREM 330:

<D(n) = #J(l)+...++(n) = $+O(nlogn).

For, by (16.3. l),

= in2 2 ~$+O(n2  2 -$-f-O(nlogn)
d=l n-t1

= &+O(n)+O(nlogn)  = 3$+O(nlogn),

by Theorem 287 and (17.2.2).
The number of terms in the Farey series  3, is @(n)+l,  SO that an

alternative form of Theorem 330 is

THEOREM 331. The number of terms in the Farey series  of order n is
approximately 3n2/7r2.

Theorems 330 and 331 may  be stated more picturesquely in the
language of probability. Suppose that n is given, and consider a11 pairs
of integers (p, q) .for  which

q > 0, l<p<q<n,
and the corresponding fractions pjq. There are

~4, = +n(n+l)-  $n2

.
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SUC~  fractions, ana xn, the number of them which are in their lowest
terms, is a>(n) If, as is natural, we define  ‘the probability that p
ad q are prime to one  another’ as

we obtain

THEOREM  332. The probability that two integers should be prime to one
another is 6/7r2.

18.6. The number of quadratfrei numbers. An alliecl  problem
is that of finding  the probability that a number should be ‘quadratfrei’,t
i.e. of cletermining approximately the number Q(x) of quaclratfrei
numbers not exceeding x.

We cari  arrange all the positive integers,n  < y2 in sets S,,  X2,...,  such
that Sd  contains  just those n whose largest  square factor  is d2.  Thus
S, is the set of a11 quaclratfrei n < y2.  The number of n belonging to

ad, when d > y, Sd  is empty. Hence

I%"l= c Q(B)
d<y

ad SO, by Theorem 268,

= Y2 dzvF+o(Y)

* A4= Y2 dzl F+O(Y’  2 -g+o(Y)
d>u

= &+O(Y) = z+ O(Y).

Replacing y2  by x, we obtain

THEOREM 333. The probability that a number should be quudrutfrei  is
6/.rr2: more precisely

Q(x) = $+ 0(4x).

t Without square factors, a product of different  primes: rw $ 17.8.
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A number n is quadratfrei if p(n) = fl, or Ip(n)l  = 1. Hence an
alternative statement of Theorem 333 is

THEOREM 334: &-4n)l  = $ + W4.

It is natural to ask whether, among the quadratfrei numbers, those
for which p(n) = 1 and those for which p(n) = -1 occur with about
the same  frequency. If they do SO, then the sum

M(x) = n&44

should be of lower order than x; i.e.

THEOREM 335: M(x) = 0 (2).

This is true, but we must defer the proof  until 0 22.17.

18.7. The order of r(n). The function r(n) behaves in some ways
rather like d(n), as is to be expected after Theorem 278 and (16.9.2).
If n ES  3 (mod4),  then r(n) = 0. If n = (p,p2...pI+Jm,  and every p is
4k+l,  then r(n) = 4d(n). In any  case r(n) < 4d(n).  Hence we obtain
the analogues of Theorems 313, 314, and 315, viz.

THEOREM 336: limr(n) = 0.

THEOREM 337: r(n>-  O{(log n)“}
is false for every A.

THEOREM 338: r(n) = O(d)
for every positive 6.

There is also  a theorem corresponding to Theorem 317; the maximum
order of r(n) is logn

2210glogB

A difference  appears when we consider the average order.

THEOREM 339. The average order of r(n) is T; i.e.

lim  W)+W+...+r(n)  = 7r.
Tt-hL-0 n

More precisely

(18.7.1) r(l)+r(2)+...+r(n)  = nn+O(&).
We cari  deduce this from Theorem 278, or prove it directly. The direct

proof  is simpler. Since  r(m), the number of solutions of x2+y2 = m,
is the number of lattice points of L on the circle  x2+y2 = m, the sum
(18.7.1) is one  less  than the number of lattice points inside or on the
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circle x2+ y2  = n. If we associate with each  such  lattice point the lattice
square of which it is the south-west corner, we obtain an area  which is
included in the circle

x2+y2 = (2/n+2/2)2
and includes  the circle

x2+y2 = (k-112)2;

and each  of these circles  has an area  7mf  O(4n).
This geometrical argument may be extended to space  of any number of dimen-

sions. Suppose, for example, that ~~(72)  is the number of integral solutions of
22+yq-za  = 9%

(solutions differing  only in sign or order  being again  regarded as distinct). Then
we cari prove

T H E O R E M  3 4 0 : 'rs(l)+r3(2)+...+rs(n)  = &mP+O(n).

If we use Theorem 278, we have

l<T<, w = 4 tf $ x(4 = 41<;<z  xw. . . .
the sum being extended over all the lattice points of the region D of
$ 18.2. If we Write  this in the form

41&2  x%v~z,r  l = 4. . 1 x(u)[$
ldU$X

we obtain
TREOREM 341:

l<T<z44  = 4
. .

([“]-[;I+[;l-...).T

This formula is true whether x is an integer or not. If we sum
separately over the regions ADFY and DFX of 9 18.2, and calculate
the second part of the sum by summing first  along  the horizontal lines
of Fig. 9, we obtain

The second sum is 0(4x),  since  1 x(u), between any  limits, is 0 or &l,

and zz xb4[E]  = uzz x(uj~+w4.
= x l

(
L+f-...+ #) +O(i)

1

= x(~T+o(#o(dx)  = )~XfO(~X).
This gives the result of Theorem 339.
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NOTES ON CHAPTER XVIII
8 18.1. h or the proof of Theorem 314 see Polya and Szego,  ii. 160-1, 386.
Theorr,m  317 is due to Wigert, Arkiw  fer  mutemat&,  3, no. 18 (1907),  l-9

(Landau, Handbuch, 219-22). Wigert’s proof depends  upon the ‘prime number
theorem’ (Theorem 6),  but Ramanujan (Collected  papers,  85-86)  showed that it
is possible to prove it in a more elementary way. Our proof is essentially
Wigert’s, modified SO as not to require Theorem 6.

5 18.2. Theorem 320 was proved by Dirichlet, Abhandl.  Akad. Berlin (1849),
69-83 ( Werke, ii. 49-66).

A great deal of work has been done  since  on the very difficult  problem
(‘Dirichlet’s divisor problem’) of finding  better bounds for the errer  in the
approximation. Suppose that 19 is the lower bound of numbers /?  such  that

d(l)+d(2)+...+d(n)  = nlogn+(2y-l)n+O(ns).

Theorem 320 shows that 0 Q ).  Voronoi  proved in 1903 that ll  < 4, and van der
Corput  in 1922 that 0 -: $&,  and these numbers have been improved further by
later  writers. On the other hand, Hardy and Landau proved independently in
1915 that 0 > a. The true value of 5’  is still unknown. See also the note on

S 18.7.
As regards the sums d2(  l)+...+@(n), etc., see Ramanujan, CoZZected  papers,

133-5, and B. M. Wilson, Proc.  London Math. Soc. (2) 21 (1922),  235-55.
§ 18.3. Thcorem 323 is due to Gronwall, Trans.  American Math. Soc.  14  (1913),

113-22.
Theorem 324 stands as stated here in Bachmann, Analytische  Zuhlentheorie,

402. The substance of it is contained  in the memoir of Dirichlet referred to
under 3 18.2.

If 18.45. Theorem 328 was proved by Landau, Archiw  d. Math. u. Phy.s. (3)
5 (1903),  86-91 (Handbuch, 21619);  and Theorem 330 by Mertens, Journal für
Math. 77 (1874),  289-338 (Landau, Handbuch, 578-9).

§ 18.6. Theorem 333 is due to Gegenbauer, Denkschriften Akad.  Wien, 49, Abt.
1 (1885),  37-80 (Landau, Handbuch, 580-2).

Landau [Handbuch, ii. 588-901 showed that Theorem 335 follows simply from
the ‘prime number theorem’ (Theorem 6) and later  [Sitzungsberichte Akud.  Wien,
120, Abt. 2 (1911),  973-881 that Theorem 6 follows readily from Theorem 335.

3 18.7. For Theorem 339 see Gauss, Werke, ii. 272-5.
This theorem, like Theorem 320, has been the starting-point of a great deal

of modern work, the aim being the determination of the number 0 corresponding
to the 0 of the note on 0 18.2. The problem is very similar to the divisor problem,
and the numbers 4, fr,  $ occur  in the same  kind of way; but the analysis required
is in some ways a little simpler and has been pushed a little farther. See Landau,
Forleaungen,  ii. 183-308, and Titchmarsh, Proc.  London Math. Soc. (2) 38 (1935),
96115  and 555.

For a general  elementary method of calculating the ‘average order’ of arith-
metical  functions  belonging to a wide class  and for further references  to the
literature, see Atkinson and Cherwell, Quarterly  Journal of Math. (Oxford), 20
(1949),  65-79.



XIX

PARTITIONS

19.1. The general problem of additive arithmetic. In this and
the next two chapt#ers  we shall be occupied with the additive theory of
numbers. The general problem of the theory may  be stated as follows.

Suppose that A or a,,  a3>  a3>  ***

is a given system of integers. Thus A might contain  a11 the positive
integers, or the squares, or the primes. We consider a11 possible repre-
sentations of an arbitrary positive integer n in the form

n = ai,+ai2+...+ail,

where s may  be fixed or unrestricted, the a may  or may  not be neces-
sarily different, and order may  or may  not be relevant, according to
the particular problem considered. We denote by r(n) the number of
such  representations.  Then what cari  we say  about r(n) ? For example,
is r(n) always positive? 1s  there always at any  rate one  representation
of every n ?

19.2. Partitions of numbers. We take first the case in which A
is the set 1, 2, 3,... of a11  positive integers, s is unrestricted, repetitions
are allowed, and order is irrelevant. This is the problem of ‘unrestricted
partitions’,

A partition of a number n is a representation of n as the sum of any
number of positive integral parts. Thus

5=4+1=3+2=3+1+1=2+2+1=2+1+1+1

= 1+1+1+1+1

has 7 partitions.? The,order of the parts is irrelevant, SO that we may,
when we please, suppose the parts to be arranged in descending order
of magnitude. We denote by p(n) the number of partitions of n; thus
p(5) = 7.

We cari  represent a partition graphically by an array of dots or
‘nodes’ such  as

. . . . . . .

. . . .
A . . .

. . .

t We  hare,  of’ course, to Count  the representation by one part only.
5591 T
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the dots in a row corresponding to a part. Thus A represents the
partition

7+4+3+3+1
of 18.

We might also read A by columns, in which case it would represent
the partition 5+4+4+2+1+1+1

of 18. Partitions related in this manner are said to be conjugute.
A number of theorems about partitions follow immediately from this

graphical representation. A graph with m rows,  read horizontally,
represents a partition into m parts; read vertically, it represents a
partition into parts the largest of which is m. Hence
THEOREM 342. The number of partitions of n into m parts is equd to

the number of partitions of n into parts the large&  of which- is m.

Similarly,

THEOREM 343. The number of partitions of n into ut  most m parts is
equal  to the number of partitions of n into parts which do not exceed m.

We shall make further use of ‘graphical’ arguments of this character,
but usually we shall need the more powerful weapons provided by the
theory of generating functions.

19.3. The generating function of p(n). The generating functions
which are useful here are power seriest

F(x) = 2 f (n)x”.
The sum of the series  whose general coefficient is f(n) is called the
generating fonction  off(n), and is said to enumerate f (n).

The generating function of p(n) was found by Euler, and is

(19.3.1)
p(x) =  (I-z)(l-;2)(l-2”)...  = 1+ 7 p(nP.

We cari  see this by writing the infinite  product as

(1+x+x2+...)

(1+x2+2*+...)

(1+23+x6+...)
. . . .

and multiplying the series  together. Every partition of n contributes
just 1 to the coefficient of xn.  Thus the partition

10 = 3+2+2+2+1

t Compare 5 17.10.
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corresponds to the product of x3  in the third row, x6  = x2+2+2  in the
second, and x in the first;  and this product contributes  a unit to the
coefficient of xl”.

This makes (19.3.1) intuitive, but (since  we have to multiply an in-
finity of infinite  series)  some development of the argument is necessary.

Suppose that 0 < x < 1, SO that the product which defines  F(x) is
convergent. The series

1 +z+xq  . ..> 1 +X2+24+  . ..> . ..> 1+x”+x2”+  . . . .

are absolutely convergent, and we cari  multiply them together and
arrange the result as we please. The coefficient of xn in the product is

p,(n),
the number of partitions of n into parts not exceeding m. Hence

(1g*3*2)
1

Fm(x)  = (1-x)(1-x2)**~(~)  A

It is plain that
(19.3.3) p,(n)  <p(n),

that
(19.3.4) p,(n) = p(n)
for n < m, and that

(19.3.5) p,(n) + p(n),
when m + 00,  for every n. And

(19.3.6)

The left-hand side  is less than F(x) and tends to F(x) when m + CCL

Thus l+,n~lz4nW  < F,(x)  < F(x),

which is independent of m. Hence 2 p(n)xn is convergent, and SO, after
(19.3.3),  ZP,( n xn1 converges, for any fixed x of the range 0 < x < 1,

uniformly for all values of m. Finally, it follows from (19.3.5) that

l+ nzl~(n)x”  = :y-(  1 +n~lp,(n)xn)  = lim F,(x)  = F(x).m-+00
Incidentally, we have proved that

(19.3.7)
1

(l-x)(1-22)...(1-xy

enumerates the partitions of n into parts which do not exceed m or
(what is the same  thing, after Theorem 343) into at most m parts.
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We have written out the proof  of the fundamental formula (19.3.1)
in detail. We have proved it for 0 < x < 1, and its truth for 1x1  < 1
follows at once from familiar theorems of analysis. In what follows
we shall pay no attention to such  ‘convergence theorems’,t  since  the
interest  of the subject-matter  is essentially formal.  The series  and
products with which we deal are a11 absolutely convergent for small  x
(and usually, as here, for 1x1  < 1). The questions of convergence,
identity, and SO on, which arise are trivial, and cari  be settled at once
by any  reader who knows the elements of the theory of functions.

19.4. Other generating functions. It is equally easy to find the
generating functions which enumerate the partitions of n into parts
restricted in various ways. Thus

(19.4.1)
(l-x)(l-&(1-x5)...

enumerates partitions into odd parts;

(19.4.2)
(l-x2)(1-:4)(1-x”)...

partitions into even parts;

(19.4.3) (l+z)(l+x”)(l+x3)...

partitions into unequal  parts;

(19.4.4) (l+z)(l+x3)(l+X5)...

partitions into parts which are both odd  and unequul;  and

(19.45)
(l-x)(l-x4)(:26)(l-xs)...7

where the indices are the numbers 5m+l  and 5m+4, partitions into
parts each  of which is of one  of these forms.

Another function which Will  occur later is

(19.4.6)
XN

(1-52)(1-X4)...(1-x2m)’

This enumerates the partitions of n-N into even parts not exceeding
2m,  or of &(n-N)  into parts not exceeding m; or again,  after Theorem
343, the partitions of $(n-N)  into at most m parts.

Some properties of partitions may  be deduced at once from the forms

t Except  once in 8 19.8, where again  we are concerned  with a fundamental identity,
and once in 8 19.9, where the limit process involved is less obvious.
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of these generating functions. Th.us

277

(19.4.7) (l+z)(l+x”)(1+23)...  = z g; +=$..*

Hence

=-(l-x)(1-2)(1-x5)...-
THEOREM 344. The number of partitions of n into unequul  parts is

equal to the number of its partitions into odd parts.

It is intoresting to prove this without the use of generating functions. Any
number 1  cari be expressed uniquely in the binary scale,  i.e. as

1 = 2”+2b+2”+... (0 < a < b < cm).?

Hence a partition of n into odd parts cari be written as

n = 2,.1+1,.3+1,.5+...

= (2al+2b+...)1+(2a*+2b2+...)3+(2n3+...)5+...;

and there is a (1,l)  correspondence  between this partition and the partition into
the unequal parts

2y 2q..., 2%.3,  S’a.3  >...>  2aa.5, 93.5 , . . . , . . . .

19.5. Two theorems of Euler. There are two identities due to
Euler which give instructive illustrations of different methods of proof
used frequently in this theory.

THEOREM 345:

(1$x)(1+x3)(1+x5)...

THEOREM 346:

(l+x~)(1+~4)(1+x”)...

= 1++$+ X6 Xl2

(l-x~)(1-_24)+(1-x~)(1-~4)(l-x6)+~*~~

In Theorem 346 the indices in the numerators are 1.2, 2.3, 3.4 ,...  .

(i) We  first prove these theorems by Euler’s device  of the intro-
duction of a second parameter a.

Let

K(a) = K(a,x)  = (l+ax)(l+ax3)(l+ax5)...  = l+c,a+c2a2+...,

t This is the arithmetic equivalcnt  of the  idcntity

(1+z)(l+z~)(l~~z”)(l+x8)...  = li_.
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where c,  = C~(Z)  is independent of a. Plainly

K(a) = (1 +az)K(ux2)

Or 1+c,a+c2a2+...  = (1+ux)(l+c,ux2+c2a%*+...).

Hence, equating coefficients, we obtain

Cl = x+c1x2,  c2 = c1ti+c2x4  >...,  c, = C,-1X2~-l+C,x2m  >...>

and SO
X2m-1 X1+3+...+(2m-1)

cm = 1_X2mCm-l= (1-22)(1-X4)...(1-x2m)
a

= (1-x2)(1-Z)...(l-x2mj

It follows that

(19.51) (l+ux)(l+ux~)(1+ux5)...  = l+~2+(I~x~;;-x4)+...,

and Theorems 345 and 346 are the special  cases a = 1 and a = x.
(ii) The theorems cari  also be proved by arguments independent of

the theory of infinite  series. Such  proofs are sometimes described as
‘combinatorial’. We Select  Theorem 345.

We have seen that the left-hand side of the identity enumerates
partitions into odd and unequal parts: thus

15 = 11+3+1=  9+5+1=  7+5+3
has 4 such  partitions. Let us take, for example, the partition 11+3+  1,
and represent it graphically as in B, the points on one  bent line corre-
sponding to a part of the partition.

. l
1 I

.

. l
B C D

We cari  also read the graph (considered as an array of points) as
in C or D, along a series  of horizontal or vertical lines.  The graphs
C and D differ only in orientation, and each  of them corresponds to
another partition of 15, viz. 6+3+3+1+1+  1. A partition like this,
symmetrical about the south-easterly direction, is called by Macmahon
a self -conjugute  partition, and the graphs establish a (1, 1) correspondence
between self-conjugate partitions and partitions into odd and unequal
parts. The left-hand side  of the identity enumerates odd and un-
equal partitions, and therefore the identity will be proved if we cari
show that its right-hand side  enumerates self-conjugate partitions.
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Now our array of points may  be read in a fourth way, viz. as in E.

E

.

Here we have a square of 32 points, and two ‘tails’, each  representing
a partition of &(15-32)  = 3 into 3 parts at most (and in this particular
case a11 1’s).  Generally, a self-conjugate partition of n cari  be read as
a square of m2  points, and two tails  representing partitions of

&(n-m2)

into m parts at most. Given the (self-conjugate) partition, thenm  and
the reading of the partition are fixed; conversely, given n, and given
any square m2  not exceeding n, there is a group of self-conjugate parti-
tions of n based upon a square of m2  points.

is a special  case of (19.4.6),  and enumerates the number of partitions
of *(n-m”)  into at most m parts, and each  of these corresponds as we
have seen  to a self-conjugate partition of n based upon a square of m2
points. Hence, summing with respect to m,CO *1+ ~c1 (1-x2)(lLz)...(1-x2”)
enumerates all self-conjugate partitions of n, and this proves the
theorem.

Incidentally, we have proved

THEOREM 347. The number of partitions of n into odd  and unequal
parts is equul  to the number of its self-conjugate partitions.

Our argument suffices  to prove the more general identity (19.5.1),

and show its combinatorial meaning. The number of partitions of n
into just m odd and unequal parts is equal to the number of self-con-
jugate partitions of n based upon a square of m2 points. The effect of
putting a = 1 is to obliterate the distinction between different values
of m.

The reader Will  find  it instructive to give a combinatorial proof  of
Theorem 346. It is best to begin by replacing x2  by x, and to use the
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decomposition 1+2+3+...+m  of &n(m+l).  The square of (ii) is
replaced by an isosceles right-angled triangle.

19.6. Further algebraical identities. We cari  use the method (i)
of $ 19.5 to prove a large number of algebraical identities. Suppose, for
example, that

Iqa)  = Kj(U,X)  = (l+ax)(l+aLz”)...(l+azi)  = L: C,cP.
m=o

T h e n (l+ax~+l)Ki(u) = (l+uz)Kj(ux).

Inserting the power series,  and equating the coefficients of a?, we
obtain

c,+c,-1  .j+l  = (C,+C,-l)x~
or (1 -P)C, = (Zm-d+l)C,-l  = P( 1 -Xj-m+l)Cm-l,

for 1 < m < j. Hence

THEOREM 348:

(l+u~)(1+ux”)...(l+u~~)  = l+uz~+u223(i~~)t)+

+~~~+~~~*m(m+l)(l~x~)~~~(l-Zj-m+l)  + . ..fujx&j(j+l)
(1-z)...(l-P)

.

If we Write  x2  for x, 1/x for a, and make j -+  CO,  we obtain Theorem
Similarly we cari  prove

THEOREM 349:

345.

1
F = 1+ux~+u2zz(~~~j)~t~~)+....

(1-ux)(l-ux2)...(1-uxJ) l - x X

In particular, if we put a = 1, and make j -f CO,  we obtain

THEOREM 350:

(l-x)(:-x2)...
zzz I+II:

X2

l-x+(1-x)(1-x2)  ****+

19.7. Another formula for F(x). As a further  example of ‘com-
binatorial’ reasoning we prove another theorem of Euler,  viz.

THEOREM 35 1:

1
(l-2)(1-22)(1-23)...

X4 X9
= ~+(~~x)2+(~~x)2(122)2+(1-x~2(1-x2)2(l-x3)2+~~~~
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The graphical representation of any  partition, say

. . . . . .

. . . . . .
. . .F

contains  a square of nodes in the north-west corner. If we take the
large&  such  square, called the ‘Durfee square’ (here a square of 9 nodes),
then the graph consists  of a square containing i2 nodes and two tails;
one  of these tails  represents the partition of a number, say  1,  into not
more than i parts, the other the partition of a number, say  m,  into
parts not exceeding i; and

n  =  i2+l+m.

In the figure n = 20, i = 3, 1 = 6, m = 5.

The number of partitions of 1 (into at most i parts) is, after 5 19.3,
the coefficient  of x1  in

1

(1-2)(1-x2)...(1-xy

and the number of partitions of m (into parts not exceeding ;)  is the
coefficient of xm  in the same  expansion. Hence  the coefficient of xn-i’ in

2

jl-x)(l-52)...(1-x~)  ’1

or of xn  in
‘2

(l-x)2(1-:2)2...(1-x’)2~

is the number of possible pairs of tails  in a partition of n in which the
Durfee square is i2. And hence  the total number of partitions of n is
the coefficient of xn  in the expansion of

This proves the theorem.
There are also simple algebraicali  proofs.

t We use the word ‘algebraical’  in its old-fashioned  sense, in which it includes ele-
mentary manipulation of power series  or infinite  products.  Such proofs involve  (though
sometimes only superficially) the use of limiting processes, and are, in the strict sense
of the word, ‘analytical’ ; but the word ‘analytical’ is usually reserved,  in the theory
of numbers,  for proofs which depend upon analysis  of a deeper kind (usually upon the
theory of functions of a complex variable).
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19.8. A theorem of Jacobi.  We shall require later certain special
cases of a famous  identity which belongs properly to the theory of
elliptic functions.

THEOREM 352. 1f  1x1  < 1, then

(19.8.1) npl{( 1 -x2”)( 1 +x2+2)(  1 .x~~-~z-~)>

-m
for a11 z wxept  2 = 0.

= l+n~lxqZ~+P-“)  = 2 x+!n

The two forms of the series  are obviously equivalent.
Let us write P(x, 2)  = QWW z)+, z-l),

where QC4 =nfjl(l-x2n)t X(x, 2)  = fi (1 +x2+12).
n=1

When 1x1  < 1 ad z # 0, the infinite  products

are a11 convergent. Hence the products Q(x), 22(x,  z),  X(X,  z-1)  ad thc
product P(x, z) may  be formally multiplied out ad the resulting terms
collected and  arrangea in any way we please; the resulting series  is
absolutely convergent and its sum is equal to P(x, z). In partidar,

P(x,z)  = 2 an(x)zn,
?L=-CO

where a,(x) does not depend on z ad
(19.8.2) a-,(x) = a,(x).

Provided  x # 0, we cari  easily verify that

(l+xz)R(x,zx2)  = X(x, z), I?(x,  z-1x-2) = (1 +z-lx-‘)R(x,  z-l),
SO that xzP(x,zx2) = P(x,z).  Hence

2 x2n+la,(x)Zn+l  =
n=-m nzIg  %kw*

Since  this is true for a11 values of z (except z = 0) we cari  equate the
coefficients of P ad find that an+l(x)  = x2n+1a,(x).  Thus, for n 3 0,
we have a,+l(x)  = ~2n+l)+(2n-l)+...+la,(x)  = xCn+1)2a0(x).

By (19.8.2) the same  is true when n+l < 0 ad SO a,(x) = xa”aO(x)  for
a11 n, provided  x # 0. But, when x = 0, the result is trivial. Hence
(19.8.3) P(x, 4 = a,W%x,  21,

where 8(x, 2) = 2 x”P.
n=-m

TO complete the proof  of the theorem, we have to show that a,,(x) = 1.
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If z has any  fixed value other than zero and if 1x1  < 4 (say), the
products Q(Z),  R(z,  z),  R(z,  z-l)  and the series  S(s, z) are a11 uniformly
convergent with respect to x. Hence  P(x,  z) and S(x,  z) represent
continuous  functions of x and, as x + 0,

P(x,  2) + P(0,  2) = 1, S(x,  2) -+ X(0,2)  = 1.

It follows from (19.8.3) that a,,(x) + 1 as z + 0.
Putting z = i, we have

(19.8.4) S(x,i) = 1+2  2 (-l)%+  = X(x4,  -1).
n=1

Again

qx,  i)R(x,  i-1)  = -fi {( 1 +iLz?-l)(  l-iz2”-1))  = npI  (lf24y
n=1

Q(x)  =nfJ(l-22”)  =nfJ{(1-~q1-x4”-2)},

and SO

(19.8.5) P(z,  i) = fJ{(  1 -ie)(  1 -x,+4,>

‘~~~{(1-2”“)(1-s”“-‘)‘}  = P(24,  -1).

Clearly P(z4, - 1) # 0, and SO it follows from (19.8.3),  (19.8.4),  and
(19.85) that a,(z) = ao( Using this repeatedly with x4,  x4*,  x4*,...
replacing x, we have

ao = ao(x4)  = . . . = uo(x4”)

for any  positive integer k. But 1x1  < 1 and SO x4’  + 0 as k -+ CO.  Hencc

u&x)  = lima,(z) = 1.
s-+0

This completes the proof  of Theorem 352.

19.9. Special  cases of Jacobi’s identity. If we Write  xk  for x,
-x’ and & for z, and replace n by n+ 1 on the left-hand side  of (19.8.1),
we obtain

(19.9.1)  g{P-~ ekn+k-Z)(  1 Mx2kn+k+z)(  1 -x2k7L+2k)}  ~~2~  ,( -  l)nxkn2+zn,
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Some special  cases are particularly interesting.
(i) k = 1, Z = 0 gives

npo{(  l-x2n+l)2(  l-x2n+2)} = $ (- l)??+,
12=-m

[Chap. XIX

;Do{(  1 +Lz?n+1)2(  l-Lz%f2)} = J *Lxn’,

two standard formulae from the theory of elliptic functions.
(ii) k - 8,  E = 4 in (19.9.1) gives

or

THEOREM 353 :

(l-2)(1-52)(1-2?)...  =JJ-lpw~+l).

This famous  identity of Euler may  also be written in the form

(19.9.3) (l-2)(1-X”)(l-x3)...  = l+n~l(-l)n{5~n(3n-l)+~~~(3~+l)}

= l-Z-Z2+55+5’-X12-215+...  .

(iii) k: == Z = 2 in (19.9.2) gives

n-o {( 1 +P)(  1 -CP+2)> = f xfn(n+l),
)2=-m

which may  be transformed, by use of (19.4.7),  into

THEOREM 354:

(l-s2)(1-2+)(1-q...
(l-X)(l--2+)(1-x5)...

= l+z+~+z6+d0+...  .

Here the indices on the right are the triangular numbers.t
(iv) k = 2,  1 = # and k = &,  1 = 3 in (19.9.1) give

THEOREM 355 :

~~o{(l-~5~+~)(1-~5n+4)(l-~5~+5)}  = 2 (-l)n+(5n+3)*
12=-m

THEOREM 356 :

~~o{(l-s~“+~)(l-~““+3)(l-~~~+~)}  = 2 (-l)+N5n+l).
7L=-00

We shah  require these formulae later.

t The numbers tn(n+  1).
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As a final application, we replace x by xk and z by X*C  in (19.8.1).
This gives

fJl{( 1 -z?)( l+zng)(  1 +xn-l<-l)}  = 2 aWn+l)~n
n=-a

OP

where on the right-hand side  we have combined the terms which
correspond to n = m and n = -m- 1. We deduce that

(19.9.4) m-r  {( 1 -P)(  1 +P{)( 1 +xn<-l)}  = 2 I-“( 1 ;+;+l)Zim(jn+r)
m=o

ZZZ 2 x6~m+lV-m(1-~+<2-  . . . +[2m)
m=o

for a11 5 except 5 = 0 and 5 = - 1. We  now suppose the value of x
fixed and that 5 lies in the closed interval  - # < 5 < -4. The infinite
product on the left and the infinite  series  on the right of (19.9.4) are
then uniformly convergent with respect to 5.  Hence each  represents
a continuous  function of 5 in this interval  and we may  let 5 + - 1.
We have then

THEOREM 357:

j&l-~~)~ =~~o(-l)m(2m+l)x~m~~+1).

This is another famous  theorem of Jacobi.

19.10. Applications of Theorem 353. Euler’s identity (19.9.3)
has a striking combinatorial interpretation.  The coefficient of xn  in

(l-X)(l-x2)(1-23)...
is

(19.10.1) c (-l)“,
where the  ,summati_qn,.is  sxtended  over ai?  partitions of n into unequa!__ .+..”  ,-

is E(n)- U(n), where E(n) is the number of partitions of n into an even
number of unequal parts, and U(n) that into an odd number. Hence
Theorem 353 may  be restated as

THEOREM 358. E(n) = U(n) except when n = #(3kfl),  when

E(n)- U(n) = (- l)k.
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Thus 7=6+1=5+2=4+3=4+2+1,

E(7) = 3, U(7) = 2, E(7)-C(7) = 1,

and 7 = +.2.(3.2+1), k = 2.
The identity may  be used effectively for the calculation of p(n).  For

Hence, equating coefficients,

(19.10.2) p(n)-p(n-l)-p(n-2)+p(n-q+...

+(-l)kp{n-~k(3k-l)}+(-l)kp{n-~k(3k+l))+...  =  0 .

The number of terms on the left is about 2&&)  for large n.
Macmahon used (19.10.2)  to calculate p(n) up to n = 200, and found

that p(200)=  3972999029388.

19 .l 1. Elementary proof  of Theorem 358. There is a very beauti-
ful proof  of Theorem 358, due to Franklin, which uses no algebraical
machinery.

We try to establish a (1,1) correspondence between partitions of
the two sorts considered in $ 19.10. Such  a correspondence naturally
cannot be exact, since  an exact correspondence would prove that
E(n) = U(n) for a11 n.

We take a graph G representing a partition of n into any number
of unequal parts, in descending order. We cal1  the lowest line AB

. . . . . . c

. . . . .
/

D . . . . . . c ,/A
*-**  E . . . . .

/6
.4

. . . . . . . E
Aë . . .

G H

(which may  contain  one  point only) the ‘base’ /3  of the graph. From
C, the extreme north-east node, we draw the longest  south-westerly line
possible in the graph; this also  may  contain  one  node only. This line
CDE we cal1 the ‘slope’ u of the graph. We Write  /3  < u when, as
in graph G, there are more nodes in u than in /3,  and use a similar
notation in other cases. Then there are three possibilities.

(a) P < CJ. We move fl into a position parallel to and outside <T,  as
shown in graph H. This gives a new partition into decreasing unequal
parts, and into a number of such  parts whose parity is opposite to that
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of the number in G. We cal1  this operation 0, and the converse opera-
tion (removing u and placing it below /3)  fi. It is plain that Sz  is not
possible, when /?  < CT,  without violating the conditions of the graph.

(b) /3  = a. In this case 0 is possible (as in graph 1) unless p meets u
(as in graph J), when it is impossible. 51  is not possible in either case.

(c)  B > u* In this case 0 is always impossible. C?  is possible (as in
graph K) unless ,9  meets u and /3  = a+1 (as in graph L). Q is impos-
sible in the last case because it would lead to a partition with two equal
parts. . . . .

. . . /y- : : : ’ /,,.,,.  /*
/

1 J’

. . . . .

. . . . /

*--.* ,...-  -.-.-
K L

TO sum up, there is a (1,1) correspondence between the two types
of partitions except in the cases exemplified by J and L. In the first of
these exceptional cases n is of the form

k+(k+l)+...+(2kTl)  = *(3P-k),

and in this case there is an excess of one  partition into an even number
of parts, or one  into an odd number, according as k is even or odd. In
the second case n is of the form

(k+l)+(k+2)+...+2k  = $(3k2+k),

and the excess is the same.  Hence  E(n)- U(n) is 0 unless n = +(3k2fk),
when E(n)- U(n) = (- l)k.  This is Euler’s theorem.

19.12. Congruence properties of p(n). In spite of the simplicity
of the definition of p(n),  not very much  is known about its arithmetic
properties.

The simplest arithmetic properties known were found by Ramanujan.
Examining Macmahon’s table of p(n), he was led first to conjecture, and
then to prove, three striking arithmetic properties associated with the
moduli 5, 7, and 11. No analogous results are known to modulus 2 or 3,
although Newman has found some further results to modulus 13.

THEOREM 359:. p(%n+4)  E 0 (mod 5).

THEOREM 360: p(‘lm+S)  E 0 (mod 7).
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THEOREM 36 1 * : p(llmf6) s 0 (modll).

We give here a proof  of Theorem 359. Theorem 360 may  be proved
in the same  kind of way, but Theorem 361 is more difficult.

By Theorems 353 and 357,

X{(l-X)(l-x2)...}4  = z(l-x)(l-2”)...{(l-2)(l-Lz2)...}3

= z(l-z-Z3+z5+...)(1-32+553-7L?9+...)

where k = k(r,s)  = l+frr(3r+l)+&(s+l).

We consider in what circumstances k is divisible by 5.

Now 2(~+1)~+(29+1)~  = 8k-10r2-5  G 8k  (mod5).

Hence k SE 0 (mod 5) implies

2(r+  l)“+ (PS+ 1)2 = 0 (mod 5).

Also 2(7~+1)~  3 0, 2, or 3, (2~+1)~  c 0, 1, or 4 (mod5),

and we get 0 on addition only if 2(r+  1)2 and (29+  1)2  are each  divisible
by 5. Hence k cari  be divisible by 5 only if 2s+  1 is divisible by 5, and
thus the coeficient  of x5m+5  in

X{(l-X)(l-z?)...]4
is divisible by 5.

Next, in the binomial expansion of (1 -x)-~,  a11 the coefficients are
divisible by 5, except those of 1, x5,  XI~,...,  which have the remainder 1.t

We may  express this by writing

(l’x)5-.~ E A5 (mod5);

the notation, which is an extension of that used for polynomials in
0 7.2, implying that the coefficients of every power of x are congruent.
It follows that l-x5- - -

( l - x )5
s 1 (mod5)

and (1-x5)(1-x1o)(1-x15)...  _ 1 (mod5).
{(l-X)(l-X”)(l-x”)...}5

Hence the coefficient of x5m+5  in

,(l-X?)(l-x10)...
(1-2)(1-x3)...

= x{(l-x)(l-x2)...}4  (1-x5)(1-x’o)“’
{(l-X)(l-i??)...}5

t Theorem 76 of Ch. VI.
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is a multiple of 5. Finally, since

289

(l-x)(:-x2)...
=x(1-x5)(1-x10)...

(l-x)(1-x2)...
(1 +x5+x10+  . ..)(  1 +x10+520+  . ..) . . . .

the coefficient of xsrni5  in

(l-x)(1-:2)(1-x’)... = xf Q-1)x”

is a multiple of 5; and this is Theorem 359.
The proof  of Theorem 360 is similar. We use the square of Jacobi’s

series  1-3x+5x3-7x6+... instead of the product of Euler’s and
Jacobi ‘s  series.

There are also congruences to moduli 52,  72,  and 112,  such  as

p(25m+24)  G 0 (mod52).

Ramanujan made the general conjecture that $’

6 = 5a7611c,

and 24n E 1 (mods),

then p(n) E 0 (mod6).

It is only necessary to consider the cases 6 = 5a,  7b,  llc, since a11 others
would follows as corollaries.

Ramanujan proved the congruences for 52,  72,  112,  Krecmar that for
53,  and Watson that for general 5a.  But Gupta, in extending Mac-
mahon’s table up to 300, found that

~(243)  = 133978259344888

is not divisible by 73 = 343; and, since 24.243 = 1 (mod343),  this con-
tradicts the conjecture for 73. The conjecture for 7b had therefore to
be modified, and Watson found and proved the appropriate modifica-
tion, viz. that p(n) = 0 (mod7b) if b > 1 and 24n = 1 (rnod72”-2).

D. H. Lehmer used a quite different method based upon the analytic
theory of Hardy and Ramanujan and of Rademacher to calculate p(n)
for particular n. By this means  he verified the truth of the conjecture
for the first values of n associated with the moduli 113  and 114.’ Subse-
quently Lehner proved the conjecture for 113.  Dr. Atkin informs me
that he has now proved the conjecture for general 1 lc,  but his proof  has
not yet been published.

Dyson conjectured and Atkin and Swinnerton-Dyer proved certain
5591 U
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remarkable results from which Theorems 359 and 360, but not 361, are
immediate corollaries. Thus, let us define  tJhe  r&  of a partition as the
l a r g e s t  p a r t -._ _“---- , SO that, for example, the rank
of a partition and that of the conjugate partition differ only in sign.
Next we arrange the partitions of a number in five classes, each  class
containing the partitions whose rank has the same  residue (mod5).
Then, if n _= 4 (mod5),  the number of partitions in each  of the five
classes is the same  and Theorem 359 is an immediate corollary. There
is a similar result leading to Theorem 360.

19.13. The Rogers-Ramanujan identities. We end this chapter
with two theorems which resemble Theorems 345 and 346 superficially,
but are much  more difficult  to prove. These are

THEOREM 362 :

I+L X4 X9

1-z+(1-5)(1-5”)+(1-5)(1-5”)(1-2+)+~~~

Le.

(19*13*1) lf F (l-x)(l-;;...(l-x")  = ~(~-x5m+l;(~-x5~+4j

THEOREM 363:

X2
1+--

X6 X12

1-x+(1-2)(1-5”)+(1-5)(*-5”)(1-~)+~~~

1

= (I-X”)(l-x7)...(1-2+)(1-x*)...’
i.e.

(19.134 lf -&l~x)(l~gypj  = JJ,,-x5m+,:,,-~5m+3j
1

The series  here differ from those in Theorems 345 and 346 only in that
x2  is replaced by x in the denominators. The peculiar interest  of the
formulae lies in the unexpected part played by the number 5.

We observe first that the theorems have, like Theorems 345 and 346
a combinatorial interpretation. Consider Theorem 362, for example.
We cari  exhibit any  square m2  as

m2  = 1+3+5+...+(2m-1)

or as shown by the black dots in the graph M, in which m = 4. If we
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now take any  partition of n-m2  into m parts at most, with the parts
in descending order,  and add it to the graph, as shown by the circles
of M, where m = 4 and n = 42+ 11 = 27, we obtain a partition of n
(here 27 = 11+8+6+2)  into parts without repetitions or sequences,
or parts whose minimal difference is 2. The left-hand side  of (19.13.1)
enumerates this type of partition of n.

.  .  .  .  . . . 0 0 . 0

.  .  . . . 0 0 0

. ..000

. 0
M

On the other hand, the right-hand side  enumerates partitions into
numbers of the forms 5m+  1 and 5m+4.  Hence  Theorem 362 may  be
restated as a purely ‘combinatorial’ theorem, viz.

THEOREM 364. The number of partitions of n with minimal difference
2 is equal  to the number of partitions into parts of the forms 5mf  1 and
5mf4.

Thus, when n = 9, there are 5 partitions of each  type,

9 ,  S+i,  7+2,  6+3,  5+3$-l

of the first kind, and

9, 6+1+1+1,  4+4+1,  4+1+1+1+1+1,

1+1+1+1+1+1+1+1+1
of the second.

Similarly, the combinatorial equivalent of Theorem 363 is

THEOREM 365. The number of partitions of n into parts not less than 2,
and with minimal difference 2, is equul  to the number of partitions of n
into parts of the forms 5m+2  and 5m+3.

We cari  prove this equivalence  in the same  way, starting from the
identity m(m+l)  = 2+4+6+...+2m.

The proof  which we give of these theorems in the next section was
found independently by Rogers and Ramanujan. We state it in the
form given by Rogers. It is fairly straightforward, but unilluminating,
since  it depends on writing down an auxiliary function  whose genesis
remains obscure. It is natural to ask for an elementary proof  on some
such  lines  as those of Q 19.11, and such  a proof  was found by Schur;
but Schur’s proof  is too elaborate for insertion here. There are other
proofs by Rogers and Schur, and one  by Watson based on different
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ideas. No proof  is really easy (and it would perhaps be unreasonable
to expect  an easy proof).

19.14. Proof of Theorems 362 and 363. We Write
r

P,=l,  P,'
I - I g--&-&, Q, = &T(a)  = n j&2
a=1 8=r

X(r)  = *r(&+l)

and define  the operator 7 by

Y&)  = f< w.

We introduce the auxiliary function

(19.14.1) H, = H,(a)  = 2 (-l)‘~~~~~~‘“(l-u~~~~~)~Q~,
r=O

where m = 0, 1, or 2. Our abject  is to expand HI  and H, in powers of a.
We prove first  that

(19.14.2) H,--H,-,  = u"-~~H~-~ (m = 1,2).

We have Hm-Hmml  = rzo(- l)‘~~~x~(~)C,,  P,Qr,

where cm,  = x-m~-~mXmt-x(1-m)r+~m-lxl(m-l)

= P-lxH+l)(  1 -uxr)+x-mr(  1 -xr).

Now (1 -uz*)Q,  = Qr+l> (1 -x’)p, = & 1 -x0  = 0

and SO

H,,-H,-l  = 2(-1~~2r+m-l~"+~m-l'p,Q~+,+

+ 2 (- I)~u~~x~(+~~P~-~  Q,.
r=l

In the second sum on the right-hand side  of this identity we change r
into r+l.  Thus

Hn-K-1 = ,Eo  (- l)‘D,w  P, Q,+i
where
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since  h(r+l)--X(r)  = 5r+3.  Also Qr+r  = TQ~  and SO

H,-Hmpl  = ~m-1~  $ (- 1)q$&bGO(  ~~~3-m+t3-m))~~  Q,
r=0

= am-l$Z+w,,

which is (19.14.2).
If we put m = 1 and m = 2 in (19.14.2) and remember that Ho  = 1,

we have

(19.14.3) 4 = 71H2,

H,-H,  = uTHI,
SO that

(19.14.4) H2  = rjHz+q2H2.
We  use this to expand H,  in powers of a. If

Hz  = c,+c,a+...  = 2 cga8,
where the c,  are independent of a, then c.  = 1 and (19.14.4) gives

2 c,  a8 = z c,  Ya8 + 2 c,  GW+l

Hence, equating the coefficients of as,  we have

1 $.9-2 x2+4+...+U8-1)
c* = ctics-l  = (l-z)...(l-,@) = @-‘%

Hence H,(a)  = 2 u~z?@-~)P,.
s=o

If we put a = x, the right-hand side  of this  is the series  in (19.13.1).
Also PrQT(x)  = P,  and SO, by (19.14.1),

H,(z)  = P, 2 (-  l)?&(l-x~2r+r))
r=o

= P,(lf  &-  l)r(xtr(5r+l)+xM5r-l))].

Hence, by Theorem 356,

Hz(x)  = P, fi  {(l-
n-0

25n+2~(1-x512+2)(1_X5n+6))

cc

=
rI
n=O  (l--

x5n+~~l-x5n+4)~

This completes the proof  of Theorem 362.
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Again,  by (19.14.3),

H,(a) = 7jH,(a)  = H,(ux)  = 2 UW’P,
s=o

[Chap. XIX

and, for ti = x, the right-hand side  becomes the series  in (19.13.2).
Uaing (19.14.1) and Theorem 355, we complete the proof  of Theorem
363 in the same  way as we did that of Theorem 362.

19.15. Ramanujan’s continued fraction. We cari  Write  (19.14.14)
in the form &(a,  x) = lqux, x)+uH,(ux2, x)
SO that H2(ux,  2) = lqux2,  x)+uxH2(ux3,  x).
Hence, if we define  F(u) by

F(u) = F(a, 2) = Hl(U,  2) = 7)H,(u,  2) = H,(ux,  2)

= 1+az+ (12x4
+l-2  (1-2)(1-x2)  ***’

then F(u) satisfies
F(ax%)  = F(~z~+~)+ux~+~F(ux~+~).

Hence, if. F(uxn)
Un  = F(uxn+l)’

we have uxn+l
un=l+---;

Un+1

and hence  ZQ, = F(u)/F(ux)  may  be developed formally as

(19.15.1) F(a) -
F(ax)

1 ( ux  ax2 ax3 ,
1+  1+  l-t...

a ‘continued fraction’ of a different type from those which we con-
sidered in Ch. X.

We have no space  to construct  a theory of such  fractions here. It is
not difficult  to show that, when 1x1  < 1,

1+-.* ux*lf  1+...“‘Ï

tends to a limit by means  of which we cari  define  the right-hand side
of (19.15.1). If we take this for granted, we have, in particular,

J’(l) a3-=
F(x)

1+AE
1+  lf  ïqx.’

and SO

X21+---z
l-x2-6+29+... = (1-22)(1-~‘)...(1-x3)(1-L?+)...

1+  1+... 1 -x-x4+27+  . . . (l-X)(l-z”)...(l-X”)(l-x0)...  *

It is known from the theory of elliptic functions that these products
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and series  cari  be calculated for certain special values of x, and in
particular when x = e-2nih

and h is rational. In this way Ramanujan proved that, for example,

NOTES ON CHAPTER XIX
5 19.1. There are general accounts of the theory of partitions in Bachmann,

Niedere Zahlentheorie, ii, ch. 3; Netto, Combinatorik  (second ed. by Brun and
Skolem, 1927); Macmahon, Combinatory  analyais, ii.

8s  19.3-7. Almost a11 of the formulae of these sections are Euler’s. For references
see Dickson, Htitory,  ii, ch. 3.

5 19.8. Jacobi, Fundamentu noua, $ 64. The theorem was known to Gauss.
The proof  given here is ascribed to Jacobi by Enneper; Mr. R. F. Whitehead drew
our  attention to it.

$ 19.9. Theorem 353 is due to Euler; for references see Bachmann, Niedere
Zahlentheorie, ii. 163, or Dickson, History,  ii. 103. Theorem 354 was proved by
Gauss in 1808 ( Werke, ii. 20), and Theorem 357 by Jacobi (Fundamenta  noua, 5 66).
Professor D. H. Lehmer suggested the proof  of Theorem 357 given here.

8 19.10. Macmahon’s table is printed in Proc.  London Math. Soc. (2) 17 (1918),
114-15, and has subsequently been extended to 600 (Gupta, ibid. 39 (1935), 142-9,
and 42 (1937), 54%9),  and to 1000 (Gupta, Gwyther, and Miller, Roy. Soc. Math.
Tables 4 (Cambridge, 1958).

$ 19.11. F. Franklin, Comptes rendus, 92 (1881), 448-50.
9 19.12. Sec  Ramanujan, Collected  Papers,  nos. 25, 28, 30. These papers  cou-

tain complet& proofs of the congruences  to moduli 5, 7, and 11 only. On p. 213
he states identities which involve the congruences to moduli 5’ and 7’ as corol-
laries, and these identities were proved later by Darling, Proc.  London Math.
Soc. (2) 19 (1921), 350-72, and Mordell, ibid. 20 (1922), 408-16. A manuscript
still unpublished contains  alternative proofs of these congruences and one  of the
congruence to modulus 1 la.  See also Newman, Can. Journ. Math. 10 (1958),  577-
8 6 .

The papers referred to at the end of the section are Gupta’s mentioned under
$ 19.10; Kre6mar,  Bulletin de Z’acad.  des sciences de Z’URSS  (7) 6 (1933),  763-800;
Lehmer, Journal L&on  Math. Soc. 11 (1936), 114-16, and Bull. Amer.  Math.
SOC. 44 (1938), 84-90; Watson, Journal für Math. 179 (1936),  97-126;  Lehner,
Proc.  Amer. Math. Soc. 1 (1950), 172-81; Dyson, Eureka 8 (1944), 10-15; Atkin
and  Swinnerton-Dyer, Proc.  London Math. Soc. (3) 4 (1954), 8plO6.

There  bas been a good deal of recent work on this and related topics. See in
particular  the followhg  papers, and the references therein: Fine, Tolwku  Math.
JcUrn. 8 (1956), 149-64; Kolberg, Math. Stand.  10 (1962), 171-81; Lehner, Amer.
JQWYL Math. 71  (1949), 373-86; Newman, Trans. Amer. Math. Soc. 97 (1960),
225-36,  Illinois  Journ. Math. 6 (1962), 59-63; as well as the papers of Lehner
and Newman already referred to.

1 am indebted to Dr. Atkin for the references to recent work.
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$5 19.13-14. For the history of the Rogers-Ramanujan identities, first found
by Rogers in 1894, see the note by Hardy reprinted on pp. 344-5 of Ramanujan’s
Collected  papers, and Hardy, Ramarmjan,  ch. 6. Schur’s proofs appeared in the
Berliner  Sitzungsberichte  (1917), 302-21, and Watson’s in the Jownal  London
Math. Soc. 4 (1929), 4-9. Hardy, Rawumujan,  95-99 and 107-11, gives other
variations of the proofs.

Selberg, Avhandlinger  Noreke  Akad. (1936), no. 8, has generalized the argu-
ment of Rogers and Ramanujan, and found similar, but less simple, formulae
associated with the number 7. Dyson, Journul  London Math. Soc. 18 (1943),
35-39, has pointed out  that these also may be found in Rogers’s work, and bas
simplified  the proofs considerably.

Mr. C. Sudler suggested a substantial improvement in the presentation  of the
proof  in 5 19.14.



xx

THE REPRESENTATION OF A NUMBER BY TWO OR
FOUR SQUARES

20.1. Waring’s problem: the numbers g(k) and G(k).  Waring’s
problem is that of the representation of positive integers as sums of a
fixed number s of non-negative kth powers. It is the particular case of
the general problem of 0 19.1 in which the a are

Ok,  lk,  2k,  3k,.  .<
and s is fixed. When k: = 1, the problem is that of partitions into s
parts of unrestricted form; such  partitions are enumerated, as we saw
in Ch. XIX, by the function

1
(l-2)(1-22)...(1-L??)’

Hence we take E > 2.
It is plainly impossible to represent all integers if s is too small, for

example if s = 1. Indeed it is impossible if s < k.  For the number of
values of x1  for which x: < n does not exceed nllk+ 1; and SO the
number of sets of values x1,  x2,...,  xk-r  for which

xf+...+~$-~  < n
does not exceed

(nl/k+ l)k-1 = n(k-ll/k+  o@(k-2)/k).

Hence most numbers are not representable by k-  1 or fewer kth  powers.
The first question that arises is whether, for a given k, there is any

fixed s = s(k) such  that
(20.1.1) n = xt+x!j+...+x8
is soluble for every n.

The answer is by no means  obvious. For example, if the a of 3 19.1 are the
numbers 1 , 2 , 22,. .., 2m,.. .,

then the number 2m+1-1  = 1+2+22+...+2m

is not representable by less than mf  1 numbers a, and rr+  1 + CO  when
vz  = 2”f1-  1 -+ 00. Hence it is not true that a11  numbers are representable by
a fixed number of powers of 2.

Waring stated without proof  that every number is the sum of 4
squares, of 9 cubes, of 19 biquadrates, ‘and SO on’. His language implies
that he believed that the answer to our question is affirmative, that
(20.1.1) is soluble for each  fixed k, any  positive n, and an s = s(k)
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depending only on k. It is very improbable that Waring had any
suflîcient  grounds for his assertion, and it was not until more than 100
years later that Hilbert first proved it true.

A number representable by s kth powers is plainly representable by
any larger number. Hence, if a11 numbers are representable by s kth
powers, there is a least value of s for which this is true. This least value
of s is denoted by g(k). We shall prove in this chapter that g(2) = 4,
that is to say  that any number is representable by four squares and
that four is the least number of squares by which all numbers are
representable. In Ch. XXI we shall prove that g(3) and g(4) exist,
but without determining their values.

There is another number in some ways still more interesting than
g(k). Let us suppose, to fix our ideas, that k = 3. It is known that
g(3) = 9; every number is representable by 9 or fewer cubes, and every
number, except  23 = 2. 23+ 7. l3  and

239 = 2.43+4.33+3.13,

cari  be represented by 8 or fewer cubes. Thus dl sufficiently large
numbers are representable by 8 or fewer. The evidence indeed indicates
that only 15 other numbers, of which the largest is 454, require SO many
cubes as 8, and that 7 suffice  from 455 onwards.

It is plain, if this be SO, that 9 is not the number which is really most
significant  in the problem. The facts that just two numbers require 9
cubes, and, if it is a fa&,  that just 15 more require 8, are, SO to say,
arithmetical flukes, depending on comparatively trivial idiosyncrasies
of special  numbers. The most fundamental and most difficult  problem
is that of deciding, not how many  cubes are required for the representa-
tion of a11 numbers, but how many  are required for the representation
of a11 large numbers, i.e.  of a11 numbers with some finite  number of
exceptions.

We define  G(k) as the least value of s for which it is true that a11
sufficiently large numbers, i.e.  a11  numbers with at most a finite  number
of’exceptions, are representable by s kth powers. Thus G(3) < 8. On
the other hand, as we shall see in the next chapter, G(3) 3 4; there are
infinitely many  numbers not representable by three cubes. Thus G(3)
is 4, 5, 6, 7, or 8; it is still not known which.

It is plain that G(k)  < g(k)
for every k. In general, G(k) is much  smaller than g(k), the value of
g(k) being’swollen by the d.ifficulty  of representing certain comparatively
small numbers.
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20.2. Squares. In this chapter we confine  ourselves to the case
k = 2. Our main theorem is Theorem 369, which, combined with the
trivial resultt that no number of the form 8m+7  cari  be the sum of
three squares, shows that

g(2) = G(2) = 4.
We give three proofs of this fundamental theorem. The first (0 20.5)
is elementary and depends on the ‘method of descent’, due in principle
to Fermat.  The second ($j  20.6-g) depends on the arithmetic of quater-
nions. The third (5 20.11-12) depends on an identity which belongs
properly to the theory of elliptic functions  (though we prove it by
elementary algebra),$  and gives a formula for the number of repre-
sentations.

But before we do this we return for a time to the problem of the
representation of a number by two squares.

THEOREM 366. A number n is the sum  of two squares if and only if
aa11 prime factors of n of the form 4m+  3 have even exponents  in

form  of 72.
This theorem is an immediate consequence  of (16.9.5) and Theorem

278. There are, however, other proofs of Theorem 366, independent of
the arithmetic of k(i), which involve interesting and important ideas.

20.3. Second proof of Theorem 366. We have to prove that n is
of the form of x2+y2 if and only if

(20.3.1) n = nfn,,
where n2 has no prime factors of the form 4m+3.

We say  that n = x2+y2

is a primitive representation of n if (x, y) = 1, and otherwise an im-
primitive representation.

THEOREM 367. If p = 4m+3  and  p 1 n, then n bus  no primitive
representations.

If n has a primitive representation, then

PI (x2+y2L @,Y) = 1,
and SO p Xx,  p ,/y.  Hence, by Theorem 57, there is a number 1 such
that y E lx (modp) and SO

x2(1+12)  s x2+y2 E 0 (modp).

t Se0  5 20.10. $ See the footnote  to p. 281.
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It follows that 1+Z2  s 0 (modp)

and therefore that -1 is a quadratic residue of p, which contradicts
Theorem 82.

THEOREM 368. If p = 4m+3,  pc 1 n, pcfl,j’n, an&  c is odd, then n ha.~
no representutions  (primitive or imprimitive).

Suppose that n = xs+ya,  (x, y) = d; and let py be the highest power
of p which divides d. Then

x=dX, y=dY, (X,  Y) = 1,
n = d2(X2+Y2)  = d2N,

say.  The index of the highest power of p which divides N is c-2y,
which is positive because c is odd. Hence

N = X2+Y2, (X,  Y) = 1, PINi
which contradicts Theorem 367.

It remains to prove that n is representable when n is of the form
(20.3.1),  and it is plainly enough to prove n2 representable. Also

<x:+Yw+Ya)  = (~1~2+Y1Y2)2+(x1Y2-~2Y1)2~

SO that the product of two representable numbers is itself representable.
Since 2 = 12+12 is representable, the problem is reduced to that of
proving Theorem 251, i.e. of proving that if p = 4m+  1, then p is
representable.

Since - 1 is a quadratic residue of such  a p, there is an 1 for which
. Z2 - -1 (modp).

Taking n = [dp] in Theorem 36, we see that there are integers a and b
such  that

0 < b < dp,
/ l
-4-a (1

P b bdp’
If we w-rite c = lb+pa,
then ICI  < dP9 0 < b2+c2  < 2p.
But c E lb (modp), and SO

b2+c2  G b2+Z2b2  E b2(l+Z2)  2 0 (modp);

and therefore b2+c2  = p.

20.4. Third and fourth proofs of Theorem 366. (1) Another proof
of Theorem 366, due (in principle  at any rate) to Fermat,  is based on
the ‘method of descent’. TO prove that p = 4m+l  is representable,
we prove (i) that some multiple of p is representable, and (ii) that the
East  representable multiple of p must be p itself. The rest of the proof
is the same.
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By Theorem 86, there are numbers x, y such  that

(20.4.1) xa+y2 = w, PXX, P X Y
and 0 < m < p. Let m,  be the least value of m for which (20.4.1)
is soluble, and Write  m.  for m in (2’0.4.1).  If m,  = 1, our theorem is
proved.

If m,  > 1, then 1 < m,  < p. Now m,  cannot divide both x and y,
since  this would involve

41 (x2+v2) + mOIm,p  + m.  IP.
Hence we cari  choose c and d SO that

x1  = x-cmo, y1  = y-dm,,

1x11  G Bmo, IYll G @OY x:+y;  > 0,
and therefore

(20.4.2) 0 < ~:+y:  < 2($moj2  < mi.

N o w ~:+y:  E x2+y2 SE 0 (modm,)
or
(20.4.3) ++Y: = m,m,,
where 0 < m,  < m,,  by (20.4.2). Multiplying (20.4.3) by (20.4.1),  with
m = m,,  we obtain

mEmlp  = (x2+y2)(xi+y3  = (xx~+YY~)~+(L/~-~~~)~.
But xxl+wl  = 4x-cmo)+y(y-dmo)  = moZ

xyl-x1 y = x(y-dm,)-y(x-cm,)  = m,  Y,

where X = p-cx-dy, Y = cy-dz.  Hence

m,p = X2+Y2 (0 < ml  < mo),

which contradicts the definition of mo.  It follows that m,  must be 1.
(2) A fourth proof,  ‘due to Grace,  depends on the ideas of Ch. III.
By Theorem 82, there is a number 1 for which

Z2+l E 0 (modp).

We  consider the points (x, y) of the fundamental lattice A which satisfy

y = lx (modp).

These points define  a lattice M.t It is easy to see that the proportion
of points of A, in a large circle  round the origin, which  belong to M is
asymptotically l/p,  and that the area  of a fundamental parallelogram
of M is therefore p.

t We date  the proof  shortly, leaving  801118 details to  the reader.
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Suppose that A or (t,q)  is one  of the points of M nearest to the
origin.  Then 71~ 18  and SO

-c z 12[  G 17 (modp),

and therefore B or (- v,[) is also a point of M. There is no point of,
M inside the triangle OAB, and therefore none  within the square with
sides  OA, OB. Hence this square is a fundamental parallelogram of M,
and therefore its area  is p. It follows that

t2+q2  = P.

20.5. The four-square theorem. We pass now to the principal
theorem of this chapter.

THEOREM 369 (LAGRANGE>~ THEOREM). Every positive integer is the
sum  of four squares.

Since

(205.1)  c~~+~2+~~+~:><Y:+Y~+Y~+Y~~

; I" = (~,Y,+~2Y2+~2Y2+~,Y*)2+(~1Y2-~2Y1+X2Y~-~pY2)2

+hY3- ~2Y~+~PY2-~2YP~2+~~~YP-5~Y1+~2Y2-~2Y2~2~
the product of two representable numbers is itself representable. Also
1 = 12+02+02+02.  Hence Theorem 369 will  follow from

THEOREM 370. Any prime p is the aum of four squares.

Our first proof  proceeds on the same  lines  as the proof  of Theorem 366
in $ 20.4 (1). Since 2 = 12+12+02+02,  we cari  take p > 2.

It follows from Theorem 87 that there is a multiple of p, say  mp,
such  that mp = xf+xi+x3+xt,

with xi,  x2,  x3,  xp  not a11 divisible by p; and we have to prove that the
least such  multiple of p is p itself.

Let m,p be the least such multiple. If m,  = 1, there is nothing more
to prove; we suppose therefore that m,  > 1. By Theorem 87, m,  < p.

If m,  is even, then x1+x2+x,+x,  is even and SO either (i) xi,  x2,  x3,  xp
are a11 even, or (ii) they arè  all odd, or (iii) two are even and two are
odd.  In the last case, let us suppose that x1,  x2  are even and x3,  xq
are odd. Then in all three cases

x1+x2>  33--x2> x3+z4> x3-x 4

are a11  even, and SO
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is the sum of four integral squares. These squares are not a11 divisible
by p, since xi,  x2,  x3,  xq  are not all divisible by p. But this contradicts
our definition of m,.  Hence  m,,  must be odd.

Next, zi, x2,  x3,  x4  are not all divisible by ma,  since this would imply

4mop + moIp,
which is impossible. Also m,  is odd, and therefore at least 3. We  cari
therefore choose b,, b,, b,, b, SO that

yc  = xi-bim,  (i = 1,2,3,4)
satis fy IYrl  < tmo9 Y:+Ya+Ya+Yf  > 0.
T h e n 0 < ~~+&i-yf+y4  < 4(Smo)”  = 6
and Y?+Y~+Y~+Y~  = 0 (modm,).
It follows that

xt+xi+x3+xt  = m,p Cm0  < P),

yf+yEi+yi+y4  = moml (0 < ml  < mol;
and SO, by (20.5.1),

(20.5.2) mim,p  = zf+z~+z~+z&

where zi, z2,  z3,  zp are the four numbers which occur on the right-hand
aide of (20.51). But

zr = 2x( yi  = 2 Xi(x$--b,m,) z 2x:  E 0 (modm,);

and similarly z2,  za,  .zq are divisible by m,.  We may  therefore Write

zi = moti  (i = 1,2,3,4);

and then (20.52) becomes

m,p = tf+ti+tt+ti,
which contradicta the defmition of m,  because m,  < m,.

It follows that m.  = 1.

20.6. Quaternions. In Ch. XV we deduced Theorem 251 from
the arithmetic of the Gaussian integers, a subclass of the complex
numbers of ordinary analysis. There is a proof  of Theorem ,370 based
on ideas which are similar, but more sophisticated because we use
numbers which do not obey all the laws of ordinary algebra.

Quuternionst  are ‘hyper-complex’ numbers of a special  kind. The
numbers of the system are of the form

(20.6.1) a = ao+al  i,+a,  i,+a,  i,,

t We take  the elementa  of the algebre  of quaternions for granted.  A reader  who
knows  nothing of quaternions, but occepts  what  ia  stated  hem,  Will  be able to follow
58  20.7-g.
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where a,, a,, a2,  a3  are real numbers (the coordinutes of a), and ii, i,, i,
elements characteristic of the system. Two quaternions are equul  if
their coordinates are equal.

These numbers are combined according to rules  which resemble  those
of ordinary algebra in all respects but one. There are, as in ordinary
algebra, operations of addition and multiplication. The laws of addition
are the same  as in ordinary algebra; thus

a+B = (~,+~lil+~2i2+~2~2)+(~,+~l~l+~2i2+~2~2)

= (~,+~o)+(al+~l)il+(~2+~2)i2+(~2+~2)i2.
Multiplication is associative and distributive, but not generally com-
mutative. It is commutative for the coordinates, and between the
coordinates and i,, i,, i,; but

(20*6’2) i
if=iE=ii=  -1

i, i, = il = -i,i,,  i,i,  = i, = Li,i,,  QI, = i, = --i,i, .
Generally,

(20.6.3) 4 = (~~+~lil+~2i2+~2i2)(bo+~lil+~2i2+~2i2)

= co+clil+c2i2+c2i2,
where

/

cg = a,b,-a,b,-a,b,-a,6,,

(20.6.4) Cl = %)~l+~l~,+~,~,-~,~,,

c2 = %J~,-~,~,+~,4j+~,~,,

cg = a,b,+a,b,-a,b,+a,b,.
In particular,

(20.6.5) (a,+a,i,+a,i,+a,i,)(a,-a,i,-a,i,-cr,i,)
= a~+a:+a~+aY$

the coefficients of ii, i,, i, in the product being zero.
We shah  say  that the quaternion CL is integral if a,, a,, a2,  a3 are either

(i) all rational integers or (ii) all halves of odd rational integers. We
are interested only in integral quaternions; and henceforth we use
‘quaternion’ to mean  ‘integral quaternion’. We shall use Greek letters
for quaternions, except that, when a, = a2  = a3  = 0 and SO O T  = a,,, we
shall use a, both for the quaternion

a,+O.i,+O.i,+O.i,

and for the rational integer a,.
The quaternion

(20.6.6) 01  = a,-a,2,--a,~,-a,%,
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is called the conjugate  of 01  = a,+a,i,+a,i,+a,i,,  and
(20.6.7) Nor  =  ar&  =  ~a =  a~+a:+a2+a~
the norm of CL The norm of an integral quaternion is a rational integer.
We  shall say  that 01  is odd  or even according as Na  is odd or even.

It follows from (20.6.3),  (20.6.4),  and (20.6.6) that

3 = p!,
and SO

(20.66) N(o$) = &$  = a/?.@  = 01.Nlg.E  = aoi.N/3  = NaN,%

We  defme  01-1,  when O L  # 0, by

(20.6.9) a-1  = 25
Nol’

SO that

(20.6.10) &y-1  ZZZ 01-h  = 1.

If 01  and 01-l  are both integral, then we say  that 01  is a unity, and Write
cy  = E.  Since  •E-~  = 1, NENE-~  = 1 and SO NE = 1. Conversely, if 01  is
integral and Na: = 1, then 01-l  = oi is also integral, SO that 01  is a unity.
Thus a unity may  be defined alternatively as an integral quaternion
whose norm is 1.

If a,,, a,, as,  a3  are all integral, and a6+a:+aP+a3  = 1, then one  of
a&... must be 1 and the rest 0. If they are all halves of odd integers,
then each  of ai,... must be a. Hence there are just 24 unities, viz.

(20.6.11) rtl,  *il,  3.32, f&> ~(flfG&tsJ.
If we write

(20.6.12) p = :P+il+&+&)>

then any integral quaternion may  be expressed in the form

(20.6.13) k,p+k,&+k,i,+k,&,
where k,, k,, k2,  k3  are rational integers; and any  quaternion of this
form is integral. It is plain that the sum of any two integral quaternions
is integral. Also, after (20.6.3) and (20.6.4),

p2  =  +(-l+i,+i,+i,)  =  p - l ,

pi, = &(-l+il+i2-i3)  = -p+i,+i,,
i,p =  Q(-l+il-i2+i3)  =  -p+i,+i,,

with similar expressions for pi,, etc. Hence a11  these products are integral,
and therefore the product of any two integral quaternions is integral.

If E is any  unity,  then EOL  and (YE are said to be associates of 01.  Asso-
ciates  have equal norms, and the associates of an integral quaternion
are integral.

6691 X
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If y = c+?, then y is said to have O L  as a left-hund  divisor and fl as
a right-hand  diviser.  If 01  = a, or /l = b,, then ajl = /3a  and the dis-

tinction of right and left is unnecessary.

20.7. Preliminary theorems about  integral quaternions. Our
second proof  of Theorem 370 is similar in principle  to that of Theorem
25 1 contained in Q 12.8 and 15.1. We need some preliminary theorems.

THEOREM 371. If 01  is an integral quaternion, then one  at lead of its
associates bus  integral coordinates; and if 01  is odd, then one  at lead of
its associates bus  non-integral coordinates.

(1) If the coordinates of 01  itself are not integral, then we cari  choose
the signs SO that

01  = (b,+bli,+b2i2+b2i3)+g(~l~il~i2fi3)  = B+y,
say,  where b,, b,, b,, b, are even. Any associate of fl has integral coordi-
nateq, and yY, an associate of y, is 1. Hence  ay,  an associate of cy,  has
integral coordinates.

(2) If 01  is odd, and has integral coordinates, then

01  = (b,+b,i,+b2i2+b2i2)+(c,+c,i,+c2i2+c2i2)  = B+r,
say,  where b,, b,, b,, b, are even, each  of cg,  ci,  c2,  ca is 0 or 1, and
(since Nor  is odd) either one  is 1 or three are. Any associate of B has
integral coordinates. It is therefore sufficient to prove that each  of the
quaternions

1 ,  ii, i,, i,, 1+i,+i,,  1+i1+i3,  1+i,+i,,  i,+é,+i,

has an associate with non-integral coordinates, and this is easily verified.
Thus, if y = ii, then yp  has non-integral coordinates. If

y = l+ia+ia = (l+i,+i,+i,)-i,  = A+~L

or y = i,+i,+i,  = (l+il+i2+i3).-1  = X+~L,

then hc  = X.*(1--ii-ia-ia)  =  2
and the coordinates of ~LE  are non-integral.

THEOREM 372. If K  is an integral quaternion, and m a positive integer,
then there is an integral quaternion X such  that

N(K-mh)  < m2.

The case m = 1 is trivial, and we may  suppose m > 1. We use the
form (20.6.13)  of an integral quaternion, and Write

K = kop+k,i,+k2i2+k2i3, X = l,p+l,i,+12i,+J3&,

where k, ,..., ,, ,...  are integers.1 The coordinates of K--7& are
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J(ko-ml,),  ~{~,+2~,-m(kJ+2~,)},  ~{~,+2~,-4,+24)}~

Z{k3+2&77$,+24)).

We cari  choose Z,,  Z,,  Z,,  1,  in succession SO that these have absolute
values not exceeding $m,  &m,  $m,  &m; and then

N(K-rnii)  < igm2+3.$m2 < m2.

THEOREM 373.  If 01  and )? are integral quaternions, and fi # 0, then
there are integral quaternions h and y such  that

a=  hp+Y, Ny < N/I
We  take K  =  OLP, m  =  &!i  =  N/S,

and determine X as in Theorem 372. Then

(a-$!@  =  K-h  =  K-d,

N(a-A/3)Np  =  N(K-mti)  <  m2,

Ny = N(a-h/?)  < m = N/3.

20.8. The highest common right-hand divisor of two quater-
nions. We shall say  that two integral quaternions O L  and ,tl have a
highest common right-hand divisor 6 if (i) 6 is a right-hand divisor of O L
and /?,  and (ii) every right-hand divisor of cy.  and jl is a right-hand divisor
of 6; and we shall prove that any  two integral quaternions, not both 0,
have a highest common right-hand divisor which is effectively unique.
We could use Theorem 373 for the construction of a ‘Euclidean algo-
rithm’ similar to those of @  12.3 and 12.8, but it is simpler to use ideas
like those of g2.9  and 15.7.

We cal1 a system S of integral quaternions, one  of which is not 0,
a right-ideal if it has the properties

(i) CX~~S./?ES  + CY&/~ES,
(ii) O L  E S + ha E S for all integral quaternions X:

the latter property corresponds to the characteristic property of the
ideals of Q 15.7. If 6 is any integral quaternion, and S is the set (ha)
of a11 left-hand multiples of 6 by integral quaternions h,  then it is plain
that S is a right-ideal. We  cal1  such  a right-ideal a principal right-ideal.

THEOREM 374. Every right-ideal is a principal righ&ideaZ.

Among the members of S, not 0, there are some with minimum norm:
we cal1  one  of these 6.  If y E S, Ny < N6,  then y = 0.

If O L  E S then a--M E S, for every integral h,  by (i) and (ii). By
Theorem 373, we cari  choose X SO that Ny = N(a-AS)  < Ns.  But then
y = 0, 01  = h8, and SO S is the principal right-ideal (As).
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We cari  now prove

THEOREM 375. Any two integral quaternions (Y  and /?,  not both 0, huve
a highest common right-hand divisor 6,  which is unique except  for a left-
hard  unit factor,  and cari  be expressed in the form

(20.8.1) 6 = t--M,
where p and Y are integral.

The set S of all quaternions ~LOI+@  is plainly a right-ideal which,
by Theorem 374, is the principal right-ideal formed by all integral
multiples AS  of a certain 6.  Since S includes 6,  S cari  be expressed in
the form (20.8.1).  Since S includes 01  and fi, S is a common right-hand
divisor of O L  and fi; and any such  divisor is a right-hand divisor of every
member of S, and therefore of 6.  Hence S is a highest common right-
hand divisor of O L  and j?.

Finally, if both S and 6’ satisfy the conditions, 6’ = AS  and S = AS’,
where X and A’ are integral. Hence S = X’XS,  1 = X’h,  and X and A’ are
unities.

If S is a unity l , then a11  highest common right-hand divisors of 01  and
j?  <are  unities. In this case

p’a+v’/3 = E,
for some integral tu’,  v’; and

(~-lp’)a+(E-lv’#?  = 1;
SO that

(20.8.2) p+vp = 1

for some integral CL,  Y. We then Write

(20.8.3) (%B),  = 1.

We could of course establish a similar theory of the highest common
left-hand divisor.

If O L  and /3  have a common right-hand divisor 6,  not a unity,  then
Nor  and N,8  have the common right-hand divisor NS > 1. There is one
important case in which the converse is true.

THEOREM 376. If 01  is integral and  /? = m, a positive rational,integer,
then a necessary and  suficient  condition thut  (01,/3),.  = 1 is that
(Nor,  N/I)  = 1, or (whut  is the same  thing)  thut  (Nor,.m)  = 1.

For if (CL>/~),.  = 1 then (20.8.2) is true for appropriate p, Y. Hence

N(pa) = N(I-V/I)  = (l-mv)(l-m<),

NpNor  = l-mv-mC+m2Nv,
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and (Na,  m) divides every term in this equation except  1. Hence
(Na, m) = 1. Since N/3  =  m2, the two forms of the condition. are
equivalent .

20.9. Prime quaternions and the proof  of Theorem 370. An
integral quaternion n,  not a unity,  is said to be prime if its only divisors
are the unities and its associates, i.e. if rr  = ~$2  implies that either 01  or
b is a unity.  It is plain that a11 associates of a prime are prime. If
r = & then Nn = NaN/3,  SO that rr  is certainly prime if N?T  is a
rational prime. We shall prove that the converse is also  true.

THEOREM 377. An integral quaternion rr  is prime if and only if its
norm Nn is a rational prime.

Since Np = p2, a particular case of Theorem 377 is

THEOREM 37X.  A rational prime p cannot  be a prime quaternion.

We begin by proving Theorem 378 (which is a11  that we shall actually
need).

Since 2 = (l+ii)(l-ii),

2 is not a prime quaternion. We may  therefore suppose p odd.
By Theorem 87, there are integers r and s such  that

O<r<p, o<s<p, l+r2+s2  z 0 (modp).

I f 01  = l+si,-ri,,

then NCX  = l+r2+s2  E 0 (modp),

and (Ncx,~)  > 1. It follows, by Theorem 376, that 01  and p have a
common right-hand divisor 6 which is not a unity.  If

a = 616, P = %h
then 6, is not a unity;  for if it were then S would be an associate of p,
in which case p would divide a11  the coordinates of

a = 6,s = 6,6;lp,

and in particular 1. Hence p = 6,6, where neither 6 nor 6, is a unity,
and SO p is not prime.

TO complete the proof  of Theorem 377, suppose that rr  is prime and
p a rational prime divisor of NT. By Theorem 376, rr  and p have a
common right-hand divisor rr’ which is not a unity.  Since 7~  is prime,
7~’  is an associate of n and NT’  = Nrr.  Also p = Arr’,  where h is
integral; and p2 = NAN rrf  = N)tNrr,  SO that Nh  is 1 or p. If Nh  were
1, p would be an associate of rr’ and rr,  and SO a prime quaternion,
which we have seen  to be impossible. Hence Nn  = p, a rational prime.
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It is now easy to prove Theorem 370. If p is any  rational prime,
p = An,  where NA = Nn  = p. If TJ  has integral coordinates a,, a,, a,,
a3,  then p = NTT  = a~+a~+a~+a$

If not then, by Theorem 371, there is an associate 72’  of rr  which has
integral coordinates. Since

p = Nrr  = Nrr’,

the conclusion follows as before.
The analysis of the preceding sections may  be developed SO as to

lead to a complete theory of the factorization of integral quaternions

and of the representation of rational integers by sums of four squares.
In particular it leads to formulae for the number of representations,
analogous to those of & 16.9-10. We shall prove these formulae by a
different method in 4 20.12, and shall not pursue  the arithmetic of
quaternions further here. There is however one  other interesting
theorem which is an immediate consequence  of our analysis. If we
suppose p odd, and Select  an associate n’  of rr  whose coordinates are
halves of odd integers (as we may  by Theorem 371),  then

P = Nn = Nn’ = (bo+~)2+(bl+~)2+(b2+3)2+(b3+3)2,

where b,,. . . are integers, and

4~ = (2b,+1)2+(2b,+1)2+(2b,f1)2+(26,f1)2.

Hence  we obtain

THEOREM 379. If p ii an odd prime, then 4p is the sum of four odd
integral squares.

Thus 4.3 = 12 = 12+12+12+32  (but 4.2 = 8 is not the sum of four
odd integral squares).

20.10. The values of g(2) and G(2). Theorem 369 shows that

G(2) < g(2)  < 4.
On the other hand,

(2m)2  c 0 (mod4), (2m+1)2  E 1 (mod 8),

SO that x2  EE  0, 1, or 4 (mod8)

and s2+y2+z2  $ 7 (mod8).

Hence  no number 8mf7 is representable by three squares, and we
obtain

THEOREM 380: g(2)  = G(2) = 4.
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If x2+y2+z2  E 0 (mod4),  then a11 of x, y, z are even, and

f(x2+y2+z2)  = (i9)2+.~Y)2+(~42
is representable by three squares. It follows that no number 4a(8m+7)
is the sum of three squares. It cari  be proved that any  number not of
this form is the sum of three squares, SO that

n # 4qh+7)

is a necessary and sufhcient  condition for n to be representable by three
squares; but the proof  depends upon the theory of ternary quadratic
forms and cannot be included here.

20.11. Lemmas for the third proof of Theorem 369. Our third
proof  of Theorem 369 is of a quite  different kind and, although
‘elementary’, belongs properly to the theory of elliptic functions.

The coe%cient r.,(n) of xn  in

(l+zx+2x4+...)4  = (m~,x-s)4

is the number of solutions of

n = mi+mlj+m,2+m4
in rational integers, solutions differing only in the sign or order of the
m being reckoned as distinct. We have to prove that this coefficient
is positive for every n.

By Theorem 312

(1$2xf224f...)2  = 1+4 1--,-&+...( 1 ,
and we proceed to find  a transformation of the square of the right-hand
side.

In what follows x is any  number, real or complex, for which 1x1  < 1.

The series  which we use, whether simple or multiple, are absolutely
convergent for 1x1  < 1. The rearrangements to which we subject them
are a11 justified by the theorem that any  absolutely convergent series,
simple or multiple, may  be summed in any  manner we please.

We Write

SO that

We require two preliminary lemmas.

THEOREM 381: m~l%(l+%l)  =n&%,.
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For

THEOREM 382:

For
O3 (-l)rn-lg2rn

cmpl (1 -x2")"

20.12. Third proof of Theorem 369: the number of repre-
sentations. We begin by proving an identity more general than the
actual  one  we need.

THEOREM 383. If l? is real and not an even multiple of T,  and if

L = Lcx,e)  = $cot&3+u,sinf3+u2sin28+...,

~~ =  T,(x,e)  =  (;00t ip)2+~lp+ul)cose+u2p+u2)co82e+...,

T2 = T2(X, e) = +{~~(l- c0se)+2242(i-cos2e)+3~,(i-c0s3e)+...),

then L=  = T,+T,.

We  have

L2= 14 c0t  ge + jI$  U,  sin ne 1
2

n=1

= ($Cot~ey+*  g U, cet  ie sin ne+ 2 2 u,  u,  sin me  sin ne
?L=l m=1n=1

= (4 c0t  gw+s,+s,,
say.  We now use the identities

$cot*esinne = g+00se+c0s2e+...+c0s(n-1)e+~c0sne,

2sinmBsinnO  = c0s(m-n)8-c0s(m+n)e,
which give

s, = ~u,{~+~0se+~0sze+...+~0s(n-1)8+~~0sne},
n=1

x2 = 5 2 2 Um~,{COS(m-n)e-cOs(m+n)e}.
m=l n=1
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ad

say,  on rearranging S, ad S, as series  of cosines  of multiples of 8.t

We consider C,,  first. This coefficient includes  a contribution 4~  $ u,

from SI,  and  a contribution 4 2 ui from the terms of S, for which
1

m = n. Hence

CO  = ~n~l(%+U:)  = &%
by Theorem 381.

Now suppose k > 0. Then SI contributes

@kf n=~+l%  = &k+ l&k+l
to Ck,  while S, contributes

m-n=k
where m > 1, n > 1 in each  summation. Hence

ck = @k+ fi Uk+lf  r: ul”k+~-i&uk-l.
1=1 I=l

The reader will easily verify that

ad
uz”k-l  = uk(l+u,+uk-,)

Uk+lf%Uk+l  = uk(“l-~uk+l)~

Hence

c, = ukjt+l~~(~-uk+,)-~~~~(l+u,+uk-~))

= Uk{8+U1+Uz+...+Uk-&(k-l)-(U1+U2+...+Uk-l)}
= %c(l+uk-#),

and SO

L2  = (~COtJ#yf~  I: nu,+  2 u,(l+U,-&k)CoS  k9
n=1 k=l

= (~Cotf8)2+k~lu,(~+U&osk~+~k~lkuk(l-Cosk~)

= T,@, @  +5%x,  0
t TO justify this  rearrangement  we bave  to prove  that

and

are convergent. But this is an immediete consequence  of the absolute  convergence of

E nun,
n=l
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THEOREM 384 :

(t+u,-u3+u,-%+...)2

= Ig+g(u,+2u,+3u,+5u,+6u,+7u,+gu,+...),

where in the last series  there are no term in uq, ug,  u12,..,  .

We  put 0 = 9, in Theorem 383. Then we have

Z = 9-~~l(-l)m-1~2~(l+u2~),

T, = f~~l(2m-l)u2,-l+2~~1(2m-l)u4,-2.

Now, by Theorem 382,

Tt = +&27+l)u,,-,>

and 80 T,+T,  = ~+~(U1+2u2+3u,+5u,+...).

From Theorems 312 and 384 we deduce
T HEOREM 385 :

(1+2x+2s4+229+...)4  = 1+s 2’ mum,

where m runs through a11 positive integral values which are not multiples of 4.

Finally,

8z’mu,=  8 cf mxm-
1-xm

= 8xrnfJxmr=  8fTJc,xn,
r=1 ?L=l

where

is the sum of the divisors of n which are not multiples of 4.
It is plain that c,  > 0 for a11 n > 0, and SO r4(n)  > 0. This provides

us with another proof  of Theorem 369; ad we have also proved
THEOREM 386. The number of representation.s  of a positive integer n as

the sum of four squares, representutions  which differ only  in order  or sign
being counted as distinct, is 8 times the sum of the divisors of n which are
not multiple8 of 4.

20.13. Representations by a larger number of squares. There
are similar  formulae for the numbers of representations of n by 6 or 8
squares. Thus

r,(n) = 16~~~x(d’)d2-~~~~x(d)d2,

where dd’ = n and x(d), as in 0 16.9, i s 1 , - 1 , or 0 according as cl is
4k+1,  4k-1,  or 2k; ad

r,(n) = 16(-l)“d5  (-l)dd3.
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These formulae are the arithmetical equivalents of the identities

(1+22+224+...)4

and (1+2x+2x4+...)s  = ex+gs+g3+... .

These identities also cari  be proved in an elementary manner, but have
their roots in the theory of the elliptic modular functions. That r,(n)
and r,(,n)  are positive for all n is trivial after Theorem 369.

The formulae for r,(n), where s = 10, 12,...,  involve other arithmetical
functions of a more recondite type. Thus r,,(n) involves sums of powers
of the complex divisors of n.

The corresponding problems for representations of n by sums of an
odd  number of squares are more difficult,  as may  be inferred from
0 20.10. When s is 3, 5, or 7 the number of representations is expressible

as a finite  sum involving the symbol z of Legendre  and Jacobi.
0

NOTES ON CHAPTER  XX
3 20.1. Waring made  his assertion in Meditationea  algebraicae  (1770),  2045,

and Lagrange proved that g(2) = 4 later  in the same  year. There is an exhaustive
account of the history of the four-square theorem in Dickson,  History,  ii, ch. viii.

Hilbert’s proof of the existence of g(k) for every k was pubiished in Gottinger
Nuchrichten  (1909),  17-36, and Math. Annulen,  67 (1909),  281-305. Previous
writers had proved its existence when k = 3, 4, 5, 6, 7, 8, and 10, but its value
had been determined  only for k = 3. The value of g(k) is now known for a11  k
except  4 and 5: that of G(k) for k = 2 and k = 4 only. Thc determinations of
g(k) rcst on a previous determination of an Upper  bound for G(k).

See also Dickson,  History,  ii, ch. 25, and our notes on Ch. XXI.
Lord Saltoun drew my attention to an errer  on p. 298.
f 20.3. This proof is due to Hermite, Journal de math. (l),  13 (1848),  15 (CYuv7es,

i. 264).
3 20.4. The fourth proof is due to Grace,  Journal London Math. Soc. 2 (1927),.

3-8. Grace  also gives a proof of Theorem 369 based  on simple properties of four-
dimensional  lattices .

(i  20.5. Bachet  enunciated Theorem 369 in 1621, though he did not profeas  to
have proved it. The proof in this section is subatantially Euler’s.

$8  20.6-g. These sections are bssed on Hurwitz, Vorlesungen  über  die Zahlen-
theorie  der Quaternionen  (Berlin, 1919). Hurwitz develops the theory in much
greater detail, and uses it to find the formulae of $ 20.12. We go SO far only as
is necessary for the proof of Theorem 370; we do not, for example, prove any
general theorem concerning uniqueness of factorization. There is another account
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of Hurwitz’s theory, with generalizations, in Dickson, AZgebren und ihre Zahlen-
theorie (Zürich,  1927),  ch. 9.

The first arithmetic of quaternions t’as  constructed by Lipschitz, Unter-
suchungen über die  Summen von Quudraten,  Bonn, 1886. Lipschitz defines  an
integral quaternion in the most obvious manner,  viz. as one  with integral coordi-
nates,  but his theory is  much  more complicated  than Hurwitz’s. Later, Dickson
[Pro~.  London Math. Soc. (2) 20 (1922),  225-321 worked out an alternative and
much  simpler theory based on Lipschitz’s deflnition.  We followed this theory
in our  first edition,  but it is less satisfactory than Hurwitz’s: it is not truc,  for
example, in Dickson’s theory, that any two integral quaternions have a highest
common  right-hand divisor.

5 20.10. The ‘ three-square theorem’, which we do not prove, is due to Legendre,
Essai sur  la théorie des nombres (1798),  202, 398-9, and Gauss, D.A., $ 291. Gauss
determined the number of representations. See Landau, Vorlesungen,  i. 114-25.
There is another proof,  depending on the methods of Liouville, referred to in the
note on § 20.13 below, in Uspensky and Heaslet, 465-74.

$$20.11-12.  Ramanujan, Collected  papers,  138 et seq.
S 20.13. The results for 6 and 8 squares are due to Jacobi, and are contained

implicitly in the formulae of $8  40-42 of the Fundumenta  nova.  They are stated
explicitly in Smith’s Report on the theory of numbers  (Collected  papers,  i. 306-7).
Liouville gave formulae for 12 and 10 squares in the Journal de math. (2) 9 (1864),
296-8, and 11 (1866),  1-8. Glaisher, Proc.  London Math. Soc. (2) 5 (1907),  479-90,
gave a systematic table of formulae for rz,(n)  up to 28  = 18, based on previous
work published in vols. 3%39  of the Quurterly  Journal of Math. The formulae
for 14 and 18 squares contain  functions  defined only as the coefficients in certain
modular functions  and not arithmetically. Ramanujan (Collected  papers,  no. 18)
continues Glaisher’s table up to 2s = 24.

Boulyguine, in 1914, found general formulae for r,,(n) in which every function
which occurs has an arithmetical definition. Thus the formula for rz,(n)  contains
functions  2 +(2i,2r,..., z&,  where 4 is a polynomial, t has one  of the values 2a-  8,
2s- 16,..., and the summation is over  a11  solutions of zF+zp+  . . . ++ = n.  There
are references  to Boulyguine’s work in Dickson’s History,  ii. 317.

Uspensky developed the elementary methods which seem to have been used
by Liouville in a series  of papers  published in Russian: references  Will  be found
in a later  paper in Trans. Amer. Math. Soc. 30 (1928),  385-404.  He carries  his
analysis up to 28 = 12, and states that his methods enable him to prove Bouly-
guine’s general formulae.

A more analytic method, applicable also to representations by an odd number
of squares, has been developed by Hardy, Mordell, and Ramanujan. See Hardy,
Trans. Amer. Math. Soc. 21 (1920), 255-84, and Ramanujan,  ch. 9; Mordell,
Quarterly  Journal of Math. 48 (1920),  93-104, and Trans. Camb. Phil.  Soc. 22
(1923),  361-72; Estermann,  Acta  arithmetica, 2 (1936),  47-79; and nos. 18 and
21 of Ramanujan’s Collected  papers.

WC defined Legendre’s symbol in 5 6.5. Jacobi’s  generalization is defined in
the more systematic treatises, e.g. in Landau, Vorkxungen,  i. 47.
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REPRESENTATION BY CUBES AND HIGHER POWERS

21.1. Biquadrates. We defined ‘ Waring’s problem’ in Q 20.1 as the
problem of determining g(h)  and G(k), and solved it completely when
k = 2. The general problem is much  more difficult.  Even the proof
of the existence of g(k) and G(k) requires quite elaborate analysis; and
the value of G(k) is not known for any k but 2 and 4. We give a sum-
mary of the present state of knowledge at the end of the chapter,  but
we shall prove only a few special  theorems, and these usually not the
best of their kind that are known.

It is easy to prove the existence of g(4).
‘THEOREM 387. g(4) exists, and does  not exceed  50.
The proof  depends on Theorem 369 and the identity

(21.1.1) 6(~~+b~+c~+d~)~  = (~+b)~+(a-b)~+(c+&)~+(c-d)~

+(~+~)4+(~-c)4+(~+~)4+04

+(a+d)4+(u-d)4+(b+C)4+(b-C)4.
We denote by BS a number which is the sum  of s or fewer biquadrates.
Thus (21.1.1) shows that

6(c~~+b~+c~+d~)~  = BIS,
and therefore, after Theorem 369, that
(21.1.2) 6x2  = B,,
for every 5.

Now any positive integer n is of the form
n = 6N+r,

where N > 0 and r is 0, 1, 2, 3, 4, or 5. Hence (again  by Theorem 369)
n = S(X:+X~+X~+X~)+~;

and therefore, by (21.1.2),

n = B12+B12+B,2+B12+r  = B,,+r  = &
(since  r is expressible by at most 5 1’s). Hence g(4) exists and is at
most 53.

It is easy to improve this result a little. Any n > 81 is expressible as
n = 6N+t,

whereN  > O,andt = 0, 1,2, 81, 16,or 17,accordingasn z 0, 1,2, 3,4,
or 5 (mod6). But

1 = 14, 2 = 14+14, 81 = 34, 16 = 24, 17 = 24+14.
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Hence  t = B, and therefore

n = B,,+B,  = ho,
SO that any n > 81 is BS,,.

[Chap.  XXI

On the other hand it is easily verified that n = B,, if 1 < n < 80.
In fact only 79 = 4.24+15.14
requires 19 biquadrates.

21.2. Cubes : the existence of G( 3) and g(3). The proof  of the
existence of g(3) is more sophisticated (as is  natural because a cube
may  be negative). We prove first

THEOREM 388: G(3) < 13.

We denote by C, a number which is the sum of s non-negative cubes.
We suppose that z runs through the values 7, 13, lQ,...  congruent to

1 (mod 6),  and that &  is the interval

C#(Z)  = 11~~+(~~+1)~+125z~  < n < 14zg  = #(z).

It is plain that $(2+6)  < I/(Z)  for large z, SO that the intervals Iz
ultimately overlap, and every large n lies in some 1$.  It is therefore
sutlicient  to prove that every n of Ia is the sum of 13 non-negative cubes.

We prove that any  n of Iz  cari  be expressed in the form
(21.2.1) n = N+8zs+6mx3,
where
(21.2.2) N = C,, 0 < m < .z6.

We shah  then have m = x:+xi+xg+xt,

where 0 < xi  < z3;  and SO

n = N+8.zg+6z3(x~+x~+x3+x4)

= N+~~~{(ZS+~i)‘+(2~-li)‘}

=  c,+c,  =  Cl,.

It remains to prove (21.2.1). We define  T,  s, and N by

n E 6r (modz3) (1 < r < .z3),

n = s+4  (mod6) (0 < s < 5),

N = (~+l)~+(r-l)~+2(2~-r)~+(sz)~.
Then N = C, and

0 -=c N < (z3+1)3+3zg+125.z3 = d(z)--Szg  <n--kg,
SO that
(21.2.3) 8~2’  ( n-N < 14~~.
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NOW N z (~+1)3+(r--1)3-2r3  = 6r  G n z n-8~9  (modz3).

Also ~3 = x (mod 6) for every x,  and SO

N,E r+l+r-l+2(z3-r)+sz  = 223+92
~(2+8)2~2+9-n-2
E n-8 G n--%9  (mod6).

Hence n-N-89 is a multiple of 6z3.  This proves (21.2.1),  and the
inequality in (21.2.2) follows from (21.2.3).

The existence of g(3) is a corollary of Theorem 388. It is however
interesting to show that the bound for G(3) stated in the theorem is
also a bound for g(3).

21.3. A bound for g(3). We must begin by proving a sharpened
form of Theorem 388, with a definite limit beyond which a11  numbers
are C,,.

THEOREM 389. 1f  n > 10a5,  then  n = Cl,.

We prove first that +(z+6)  < t/(z)  if z > 373, or that

11ts+(t3+1)3+125t3  < 14(t-6)s,
i.e.

(21.3.1) 1 4
( 1
l - f  s > 12+;+7-+;,

if t > 379. Now (1-8)m  > 1-d

ifO<6< 1. Hence

if t > 6; and SO (21.3.1) is satisfied if

or if

14 1-y > 12+5+F+f,
( 1

2(1-7.54)>;+7+;.

This is clearly truc  if t > 7.54+ 1 = 379.
It follows that the intervals Ia overlap from z = 373 onwards, and n

certainly lies in an In if in > 14(373)s,
which is less than 10z5.

We have now to consider representations of numbers less than 1025.
It is  known from tables that,  a11 numbers up to 40000 are C,,  and that,
among these numbers, only 23 and 239 require as many  cubes as 9.
Hence

n = C, (1 < n < 239), n = C, (240 <n < 40000).
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Next, if N > 1 and m = [N%I,  we have

N-m3  = (N*)“-m3  < SN*(N*--m)  < 3N*.

Now let us sunnose  that

and put
T h e n

Hence
(21.3.2)

Here

A*

240 < n < 1025

n = 240+N, 0  < N  <  1025.

N  =  m3+N,, m = [Ni],  0 < NI < 3N5,
NI  = m:+N,,  ml  = [Ni], 0 < N,  < 3N:,

. . . . . . . . . . . .

N4 = mf+N,, mp  = [Ni], 0 < N5 < 3N4.

n  =  24OfN  =  240+N5+m3+m~+m~+m~+m~.

0 < N5 < 3Nf  < 3(3N;)%  < . . .
< 3. 3% 3(t)”  3<%>”  3(t)’  N<i>”

= ,,($(a)’  < ,,(g)(g)5 < 35000.

240 < 24O+N, < 35240 < 40000,Hence

and SO 24O+N, is Cs;  and therefore, by (21.3.2),  n is C,,.  Hence a11
positive integers are sums of 13’ cubes.

THEOREM  390 : g(3)  < 13.
The true value of g(3) is 9, but the proof  of this demands Legendre’s

theorem ($20.10) on the representation of numbers by sums of three
squares. We have not proved this theorem and are compelled to use
Theorem 369 instead, and it is this which accounts for the imperfection
of our result.

21.4. Higher powers. In 5 21.1 we used the identity (21.1.1) to
deduce the existence of g(4) from that of g(2). There are similar identi-
ties which enable us to deduce the existence of g(6) and g(8) from that
of g(3) and g(4). Thus

( 2 1 . 4 . 1 )  60(~~+b~+c~+d~)~  =  2 (~fbfc)~+2  2 (afb)6+36  x d.

On the right there are
16+2.12+36.4=  184

sixth powers. Now any  n is of the form

60ti+r  (0 < r < 59);

and
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which, by (21.4.1),  is the sum of 184g(3)  sixth powers. Hence n is the
sum of 184g(3)+r  < 184g(3)f59

sixth powers; and SO, by Theorem 390,

THEOREM 39 1: g(6) < 184g(3)+59  < 2451.

Again,  the identity

(21.4.2) 5040(~“+b~+c~+d~)~

= 6 2 Pa)*+60  2 ~II~)~+  ~(2d+tc)*+6  2 ketbfcfd)*
has 6.4+60.12+48+6.8  = 840

eighth powers on its right-hand aide. Hence, as above, any  number
5040N is the sum of 84Og(4)  eighth powers. Now any  number up to
5039 is the sum of at most 273 eighth powers of 1 or 2.t Hence, by
Theorem 387,

THEOREM 392 : g(8) < 84Og(4)+273  < 42273.

The results of !I’heorems  391 and 392 are, numerically, very poor; and
the theorems are really interesting only as existence theorems. It is
known that g(6) = 73 and that g(8) = 279.

21.5. A lower bound for g(k). We have found Upper  bounds for
g(k), and a fortiori  for G(k), for k = 3, 4, 6, and 8, but they are a good
deal larger than those given by deeper methods. There is also the
problem of finding  lower bounds, and here elementary methods are
relatively much  more effective. It is indeéd quite  easy to prove a11
that is known at present.

We begin with g(k). Let us Write  CJ  = [(i)“]. The number

n  =  2kq-1  <  3”

cari  only be represented by the powers lk and 2k.  In fact

An  = (q-1)2k+(2k-l)lk,

and SO n requires just
q-1+2k--l =  2k+q-2

kth powers. Hence

THEOREM 393 : g(k)  b zk+q-2.

In particular g(2) > 4, g(3) > 9, g(4) > 19, g(5) > 37,...  . It is known
that g(k) = 2k+q-2 for a11 values of k up to 400 except perhaps 4 and
5, and it is quite  likely that this is true for every k.

5591

t The worst  number is 4863 = 18. 28+255.  le.

Y
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21.6. Lower  bounds for G(k). Passing to G(k), we prove first a
general theorem for every k.

THEOREM 394: G(k) > k+l  for  k > 2.

Let A(N) be the number of numbers n < N which are representable
in the form

(21.6.1) n  =  x~+x~+...+x~,

where xi  2 0. We may  suppose the xi  arranged in ascending order of
magnitude, SO that

(21.6.2) 0 < $1 <x2 < . . . < xk < N1lk.

Hence A(N) does not exceed the number of solutions of the inequalities
(21.6.2), which is

B ( N )  =  ‘“’  2 zff ...2z01.
3&=0 sr-,=O  cz&8=0 1

The summation with respect to x1  gives x,+1,  that with respect to x2
gives

2-o(53+1)  = (x3+1)(53+2)
2!  ’

that with respect to x3  gives

cx’ (x3+i)(%+2)  = (X4fw4+2)(%+3)
2! 3!

>
z,=o

and SO on: SO that

(21.6.3)

for large N.

B(N) = ; fi  ([Nlik]+r) - ;
r=l

On the other hand, if G(k) < k, a11 but a finite  number of n are
representable in the form (21.6. l), and

A(N) > N-C,
where C is independent of N. Hence

N - C < A ( N )  <B(N)-;,

which is plainly impossible when k > 1. It follows that G(k) > k.
Theorem 394 gives the best known universal lower bound for G(k).

There are arguments based on congruences which give equivâlent,,  or
better, results for special forms of k. Thus

x3  = 0, 1, or -1 (modg),

and SO at least 4 cubes are required to represent a number N = 9mf4.
This proves that G(3) 3 4, a special case of Theorem 394.
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Again
(21.6.4) x4  E 0 or 1 (mod 16),

and SO all numbers 16m+15  require at least 15 biquadrates. It follows
that G(4) > 15. This is a much  better result than that given by
Theorem 394, and we cari  improve it slightly.

It fohows from (21.6.4) that, if 16n is the sum of 15 or fewer biquad-
rates, each  of these biquadrates must be a multiple of 16. Hence

and SO n = $9:.
i=l

Hence, if 16n is the sum of 15 or fewer biquadrates, SO is n. But 31 is
not the sum of 15 or fewer biquadrates; and SO lSm.  31 is not, for any  m.
Hence

T HEOREM 395 :

More generally
G(4) > 16.

THEOREM 396: G(i>s)  > 2*+2  if 6 3 2.

The case 8 = 2 has been dealt with already. If 0 > 2, then
k  =  20  > e+2.

Hence, if x is even, x2’  s 0 (mod 2e+2),

while if x is odd then

Thus

x2’  = (1+2m)28  z 1+2e+1m+2e+1(2e-l)mz
s 1-2e+1m(m-1)  E 1 (mod 2e+2).

(21.6.5) x2’  z 0 or 1 (mod2e+2).

Now let n be any  odd number and suppose that 2e+%  is the sum of
2ei2-1 or fewer kth powers. Then each  of these powers must be even,
by (21.6.5),  and SO divisible by 2k. Hence 2k-e-2  ( n, and ‘SO n is even;
a contradiction which proves Theorem 396.

It will  be observed that the last stage in the proof  fails  for 0 = 2,
when a special  device  is needed.

There are three more theorems which, when they are applicable, give
better results than Theorem 394.

THEOREM 397. If p > 2 and 19 3 0, then  G(pe(p-l)> 3 pe+l.

For example, G(6) > 9.
If k = pe(p-  l), then e+ 1 < 3e  < k. Hence

xk  E 0 (modpe+l)
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if p 1 x. On the other hand, if p ,f  x, we have
Xk = x~e@-l>  = 1 (modp@+l)-

by Theorem 72. Hence, if pO+h,  where p ,/’  n, is the sum of p’+‘--  1 Or
fewer kth powers, each  of these powers must be divisible by pO+l  and SO

by pk. Hence pk 1 pO+&n, which is impossible; and therefore G(k) 2 p’+‘.

THEOREM 398. If p > 2 ad 8 > 0, then G{tpO(p-1))  > $(P@+I-1).

For example, G(l0)  3 12.
It is plain that

k = &ps(p-1)  > pe > S+i,

except in the trivial case p = 3, 8 = 0, k = 1. Hence
xk  E 0 (modpe+l)

if p 1%. On the other hand, if p ,/‘x,  then
2% = XT&-1) = 1 (modpo+l)-

by Theorem 72. Hence pe+l  1 (~~~-l),  i.e.
pe+1  [ (xk-l)(Xk+ 1).

Since  p > 2, p cannot  divide both xk-  1 and xk+ 1, and SO one  of xk-  1
and xk+l  is divisible by pe+l.  It follows that

xk  E 0 1 or -.l (modpefl)> >
for every x; and therefore that numbers of the form

pe+%n-&&(p@+‘-l)

require at least $(pe+l-1)  kth powers.

THEOREM 399. 1j  0 > 2,t  then G(3.20)  > 2e+2.

This is a trivial corollary of Theorem 396, since  G(3. 2e)  3 G(ae)  > 2e+2.
We may  sum up the results of this section in the following theorem.

THEOREM 400. G(k) bas the  Zower  bounds

(i) 2e+2ifkis2eor3.2eandc9>2;
(ii) pe+l  if p > 2 and  k = pe(p-1);

(iii) @pe+l-l)  if p > 2 and  k = ipe(p-1);

(iv) k+l in any  case.

These are the best known lower bounds for G(k). It is easily verified
that none  of them exceeds 4k, SO that the lower bounds for G(k) are
much  smaller, for large k, than the lower bound for g(k) assigned  by
Theorem 393. The value of g(k) is, as we remarked in 5 20.1, inflated by
the difficulty of representing certain comparatively small numbers.

t The theorem is true for 0  = 0 and 0  = 1, but is then included  in Theorems  304
and  397.



21.6 (401-2)] HIGHER POWERS 325

It is to be observed that k may  be of several of the special  forms
mentioned in Theorem 400. Thus

6  =  3(3-l)  =  7 - l  =  3(13-l),

SO that 6 is expressible in two ways in the form (ii) and in one  in the
form (iii). The lower bounds assigned by the theorem are

32 = 9, 71 = 7, +(13-l)  = 6, S+i= 7;

and the first gives the strongest result.

21.7. Sums affected  with signs: the number v(i).  It is ‘also
natural to consider the representation of an integer n as the sum of
s members of the set

(21.7.1)

or in the form

0, lk,  2k >.*., -lk,  -2k, -3k  )...>

(21.7.2) n = fxf&x%f...fxf.

We use v(k) to denote the least  value of s for which every n is repre-
sentable in this manner.

The problem is in most ways more tractable than Waring’s problem,
but the solution is in one  way still more incomplete. The value of g(k)
is known for many  k, while that of v(k) has not been found for any k
but 2. The main difficulty here lies in the determination of a lower
bound for v(k); there is no theorem corresponding effectively to Theorem
393 or even to Theorem 394.

THEOREM 401: v(k) exists  for every k.

It is obvious that, if g(k) exists, then v(k) exists and does not exceed
g(k). But the direct proof  of the existence of w(k) is very much  easier
than that of the existence of g(k).

We require a lemma.

THEOREM 402:

(~+r)~ = k!x+d,

where d is an integer independent of x.

The reader familiar with the elements of the calculus  of finite
differences Will  at once recognize this as a well-known property of the
(k-1)th difference  of xk.  It is plain that, if

&&?)  = Akxk+...
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is a polynomial of degree k, then

A&,&)  = Q&C+~)-Q&)  = kAkxk-If...,
A2Qk(x)  = k(k- l)A,xf-2+...,
. . . . . . . . .

Ak-‘Qk(X)  = k! A,x+d,
where d is independent of x. The lemma is the case Qk(x)  = xk.  In
fact d = $(k-l)(k!),  but we make no use of this.

It follows at once from the lemma that any  number of the form
k! x+d is expressible as the sum of ZZZ 2k-1

numbers of the set (21.7.1); and
n - d  =  k!x+l, -i(k!) < 1 < $(k!)

for any  n and appropriate 1 and x. Thus
n  =  (k!x+d)+Z,

and n is the sum of 2k-1+Z  < zk-‘+&(k!)
numbers of the set (21.7.1).

We have thus proved more than Theorem 401, viz.
THEOREM  403 : v(k) < 2”-‘+&(k!).

21.8. Upper bounds for v(k). The Upper  bound in Theorem 403 is
generally much  too large.

It is plain, as we observed in $ 21.7, that v(k) < g(k). We cari  also
find an Upper  bound for v(k) if we have one  for G(k). For any number
from a certain N(k) onwards is the sum of G(k) positive.kth  powers,
and

n+y” > Nk)

for some y, SO that n zGf’@eyk
1

and
(21.8.1) v(k)  < G(k)+l.
This is usually a much  better bound than g(k).

The bound of Theorem 403 cari  also  be improved substantially by
more elementary methods. Here we consider only special  values of k
for which such  elementary arguments give bounds better than (21.8.1).

(1) Squares. Theorem 403 gives v(2) < 3, which also follows from
the identities 2x+1  = (2+1)GiG

and 2.x = x2-(x-  1y+  12,
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On the other hand, 6 cannot be expressed by two squares, since  it
is not the sum of two, and x2-y2  = (z-y)(z+y) is either odd or a
multiple of 4.

THEOREM 404  : v(2)  = 3.

(2) Cubes. Since

n3-n  = (n- l)n(n+ 1) s 0 (mod 6)

for any  n, we have

n  =  n3-6x  =  n3-(x+1)3-(z-1)3+2z3

for any  n and some integral x. Hence v(3) < 5.
On the other hand,

y3  E 0, 1, or -1 (mod 9);

and SO numbers 9m*4  require at least 4 cubes. Hence v(3) > 4.

THEOREM 408: v(3) is  4 or  5.

It is not known whether 4 or 5 is the correct value of v(3). The
identity 6x = (x+1)3++1)3-2x3

shows that every multiple of 6 is representable by 4 cubes. Richmond
and Morde11 have given many  simila,r  identities applying to other
arithmetical progressions. Thus the identity

ôx+3 = ~~-(x-4)~+(2~-5)~-(2~-4)~

shows that any  odd multiple of 3 is representable by 4 cubes.
(3) Biquadrates. By Theorem 402, we have

(21.8.2) (~+3)~-3(~+2)~+3(x+l)~-x~  = 24x+0!

(where d = 36). The residues of 04, 14,  34,  24  (mod 24) are 0, 1, 9, 16
respectively, and we cari  easily verify that every residue (mod24) is
the sum of 4 at most of 0, & 1, f9, f 16. We express this by saying
that 0, 1, 9, 16 are fourth power residues (mod 24),  and that any  residue
(mod 24) is representable by 4 of these fourth power residues. Now
we cari  express any  n in the form n = 24x+d+r,  where 0 < r < 24;
and (21.8.2) then shows that any n is representable by 8+4 = 12
numbers fy4. Hence v(4) < 12. On the other hand the only fourth
power residues (mod 16) are 0 and 1, and SO a number 16m+ 8 cannot
be represented by 8 numbers &y4  unless they are a11 odd and of the
same  sign. Since there are numbers of this form, e.g. 24, which are
not sums of 8 biquadrates, it follows that v(4) > 9.
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THEOREM  406 : 9 < v(4) < 12.

(4) Fifth powers. In this case Theorem 402 does not lead to the best
result; we use instead the identity
(21.8.3)

(z+3)5-2(~+2)5+~5+(2_1)~-2(~-3)~+(~-4)~  = 720x-360.

A little calculation shows that every residue (mod 720) cari  be repre-
sented by two fifth power residues. Hence v(5) < 8+2 = 10.

The only fifth power residues (mod 11) are 0, 1, and -1, and SO

numbers of the form llm&5  require at least 5 fifth powers.
THEOREM 407 : 5 < v(5) < 10.

21.9. The problem of Prouhet and Tarry: the number P(k,  j).
There is another curious  problem which has some connexion with that
of $ 21.8 (though we do not develop this connexion here).

Suppose that the a and b are integers and that

X, = &(a)  = a:+ak+...+aS  = 1 ut;

and consider the system of k equations

(21.9.1) &(a)  = S,(b) (1 < h < k).

It is plain that these equations are satisfied when the b are a permuta-
tion of the a; such  a solution we cal1 a trivial solution.

It is easy to prove that there are no other solutions when s < k. It
is sufficient to consider the case s = k. Then

b,+b,+...+bk,  bf+...+b;,  .  . . >  bl+...+bk

have the same  values as the same  functions of the a, and thereforet
the elementary symmetric functions

z bi, 2 bibi,  . ..> b,b,...b,

have the same  values as the same  functions of the a. Hence the a
and the b are the roots of the same  algebraic equation, and the b are
a permutation of the a.

When s > k there may  be non-trivial solutions, and we denote by
P(k, 2) the least value of s for which this is true. It is plain first (since
there are no non-trivial solutions when s < k) that

(21.9.2) P(k, 2) 3 k+l.
We  may  generalize our  problem a little. Let us take j > 2, Write

f&, = a~u+a~u+...SaSu

t By Newton’s  relations between the coefficients of an equation  and the sums of the
powers of its mots.
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and consider the set of k(j-1) equations

(21.9.3) Shl=S,,2=...=S,,j  ( 1  <h<k).

A non-trivial solution of (21.9.3)  is one  in which no two sets ai,
(1 < i < S) and a, (1 < i < s) with u # w are permutations of one
another. We Write  P(k,j)  for the least value of s for which there is a
non-trivial solution. Clearly a non-trivial solution of (21.9.3) for j > 2
includes  a non-trivial solution of (21.9.1)  for the same  s. Hence, by
(21.9.2),

THEOREM 408. P(k,j) 3 P(k, 2)  3 k+ 1.

In the other direction, we prove that

THEOREM 409: P(k,j) < &G+l)+l.

Write s = ik(k+l)+l  and suppose that n > s! skj.  Consider a11 the
sets of integers

(21.9.4) a,,  a2,...> as
for which 1 <a,  <n  (1 <r  <s).

There are ns  such  sets.
Since  1 < a, < n, we have

s <S,(a) < snh.

Hence there are at most

fil(sn”-s+l)  < &n?k(k+l)  = skns-1

different sets

(21.95) SI@), ~‘#)Y,  fl&)*

N o w s! j . sknF1 < ns,
and SO at least s!j  of the sets (21.9.4) have the same  set (21.9.5). But
the number of permutations of s things, like or unlike, ,is at most s!,
and SO there are at least j sets (21.9.4),  no two of which are permuta-
tions of one  another and which have the same  set (21.9.5). These
provide a non-trivial solution of the equations (21.9.3) with

s = &k(k+l)+l.

21.10. Evaluation of P(k,j)  for particular k and j. We prove

THEOREM 410. P(k,j)  = k+l for k = 2, 3, und  5 und  allj.

By Theorem 408, we have only to prove that P(k,j)  < kfl anci  for
this it is sufficient to construct  actual  solutions of (21.9.3)  for any
given j.
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By Theorem 337, for any tîxed  j,  there is an n such  that

n = c,2+d,2  = ci+dz  = . . . = C~+C!~,

where all the numbers
Cl, c2 >*..,  cj, a, >.**> czj

are positive and  no two are equal. If we put

alu = CU7 a2u = du> a3u =  --CU> a4u = -a,,

it follows that

S,,  = 0, S,,  = 2n,  S,,  = 0 (1 < u < j),

and SO we have a non-trivial solution of (21.9.3) for k = 3, s = 4.
Hence P(3,j)  < 4 and SO P(3,j)  = 4.

For k = 2 and k = 5, we use the properties of the quadratic field
k(p) found in Chapters XIII and XV. By Theorem 255, T = 3fp and
ii = 3+p2 are conjugate primes with ~5 = 7. They are not associates,
since ?r d 9+6p+p2-=-= = ;+;p,37 7rii 7

which is not an integer and  SO, a fortiori, not a unity.  Now let u > 0
and let n2“  = A,,- Bup,

where A,, B, are rational integers. If 7 ] A,, we have

‘IT*IA,,  rIAu> rlB,p
in k(p), and i%IB;,  7/B;,  7jB,

in k(1). Finally 7 )GU,  n+) na@,  75)  na+1, + 17

in k(p), which is false. Hence 7 ,/‘A, and,  similarly, 7 1 B,.

If we Write c,  = 7i-*Au, d = 7i-uBu 2(>
we have

c;+c,d,+d2,  = N(c,-dup)  = 72i-2uN,2u  = 72i.

Hence, if we put a,,, = cU, a2U  = d,, a3U  = -(c,,+d,),  we baves,,,  = 0
and s,,  = c;+a:+(c,+a,)2  = 2(c~+c,a,+a~)  = 2.72t

Since  at least two of (alU,a2U,a3,L) are divisible by 7j+ but not by
7j+i,  no set is a permutation of any  other set and we have a non-
trivial solution of (21.9.3) with k = 2 and  s = 3. Thus P(2,j)  = 3.

For k = 5, we Write

a lu =  CU,  a2u  = z<, a3tL  =a -CU-a,,,  a4u  = -a,,,
a 511  = -a2ul  ag,  = -a3u
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and have s,,  = s,,  = s,,  = 0, s,,  = 4.725,
s,,  = 2(c~+d~+(c,+d,)4}  = 4(c~+c,d,+dfJ2  = 4.74j.

As before, we have no trivial solutions and SO P(5, j) = 6.
The fa& that, in the last solution for example, S - S - S - 0lu - 3u - 5u -

does not make the solution SO special  as appears at first  sight. For, if
aru = A ru (l<r<s,l<u<j)

is one  solution of (21.9.3),  it cari  easily be verified that, for any d,
aIU  = AruSd

is another such  solution. Thus we cari  readily obtain solutions in which
none  of the S is zero.

The case j = 2 cari  be handled successfully by methods of little use
for larger j. If a,, a2  ,...,  a,, b, ,...,  b, is a solution of (21.9.1),  then

(21.10.1) i$IJ@i+4h+bI)  =i$p?+(bi+4h}  (1 < h < k+l)

for ev.ry  d. For we may  reduce these to

‘2 (f)S,-,(a)d2  = ‘2  (f)S,-,(b)d’ (2 < h < kfl)
1=1 I=l

and these follow at once from (21.9.1).
We choose d to be the number which occurs most frequently as a

difference  between two a or two b. We are then able to remove a good
many  terms which occur on both sides  of the identity (21.10.1).

We Write [a,,..., a& = [bl,...,b.Jk
to denote that S,(a) = S,(b) for 1 < h < 1.

T h e n [O,  31,  = [l, 21,.

Using (21.10.1),  with d = 3, we get

[l, 2, 3, 61,  = [Os  3, 4, 5],,

or [l, 2, 61, = [O,  4, 512.
Starting from the last equation and taking d = 5 in (21.10.1),  we

obtain [O,  4, 7, 111, = [‘, 2, 9,  101,.
From this we deduce in succession

[l, 2, 10, 14, 181,  = [0, 4, 8, 16, 171,  (d = 7),

[0, 4, 9, 17, 22, 261,  = [l,  2, 12, 14, 24, 251,  (d = 8),

[l, 2, 12, 13, 24, 30, 35, 39-j,  = [0, 4, 9, 15, 26, 27, 37, 381, ( d = 13),

[0, 4, 9, 23, 27, 41, 46, 501,  = [l, 2, 11, 20, 30, 39, 48, 491, ( d = 11) .

Hence  P(k, 2) < k+ 1 for k < 5 and for k = 7.
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The examplet

[0, 18, 27, 58, 64, 89, 1011, = [l, 13, 3 8 , 4 4 , 7 5 , 8 4 , 102],,

shows that P(k, 2) < k+ 1 for k = 6; and these results, with Theorem
408, give

THEOREM 411. 1j  k < 7, P(k, 2) = k+l.

21.11. Further problems of Diophantine analysis. We end this
chapter by a few unsystematic remarks about a number of Diophantine
equaGons  which are suggested by Fermat’s problem of Ch. XIII.

(1) A conjecture of Euler. Can a kth power be the sum of s positive
kth powers ? 1s

(21.11.1) xl+x$+...+x$  = yk

soluble in positive integers ? ‘Fermat’s la& theorem’ asserts the im-
possibility of the equation when s = 2 and k > 2, and Euler extended
the conjecture to the values 3, 4,...,  k-l of s.  For k = 5, s = 4, how-
ever, the conjecture is false, since

275+ 845+ 1 105+  1335  = 1445

The equation

(21.11.2) .xf+xt+...+x$  = yk

has also  attracted much  attention. The case k = 2 is familiar.1  When
k = 3 we cari  derive  solutions from the analysis of $ 13.7. If we put
X = 1 and a = -3b in (13.7.8),  and then Write  --& for b, we obtain

(21.11.3) x = l-9$, y = -1, u = -9@, v  =  9q4-3q;

and SO, by (13.7.2),

(9q‘y$(3q-9q‘y3$(1-9q3)3  =  1.

If we now replace q by 517  and multiply by v12,  we obtain the identity

(21.1L.4) (954)3+(35r13-954)3+(714-95371)3  = (T4)“-

Al1 the cubes are positive if

t This may be proved by starting with
[l, 8, 1 2 , 1 5 , 20, 23, 27, 341,  = [0, 7 , 1 1 , 1 7 , 1 8 , 24, 2 8 , 353,

and taking d = 7, 1 1 , 1 3 , 17, 19 in succession.
$ See § 13.2.
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SO that any twelfth power q12 cari  be expressed as a sum of three positive
cubes in at least [g-*7] ways.

When k > 3, little is known. A few particular solutions of (21.11.2)
are known for k = 4, the smallest of which is

(21.115) 304+1204+2724+3154  = 3534.t

For k = 5 there are an infinity included in the identity

(21.113)  (75y5-~5)5+(~5+252/5)5+(25-25~5)5+(10~3y2)5+(5052/4)5

= (x5+  75y5)5.

Al1 the powers are positive if 0 < 25y5  < x5  ( 75~~.  No solution is
known with k 2 6.

(2) Equul  sums of two kth powers. 1s

(21.11.7) $+Y:  = x;+y;
soluble in positive integers ? More generally, is

(21.11.8) xF+yt  = x’;‘+y$  = . . . = x;+y;

soluble for given k and r ?
The answers are affirmative when k = 2, since,  by Theorem 337, we

cari  choose n SO as to make r(n) as large as we please. We shall now
prove that they are also affirmative when k = 3.

THEOREM 412. Whatever r,  there are numbers which are representable
as sums of two positive cubes in ut  least r different  ways.

We use two identities, viz.

(21.11.9) x3--  Y3

if

(21.11.10) LX  = xl(x:+2Y3
Xi-Y?

2

and

(21.11.11)

if

(21.11.12) X ( X 3 - 2 Y 3 )
x2= x3+y3  ’

CE
q $+Y:

y = YlP⌧l+Y3

⌧1-y;

>

⌧3-  Y3

Y 2 = y(2⌧3-  y3)x3+y3  *

t The identity (4~~-y*)*+2(4~~y)~+2(2zy~)*  = (4z4+y4)<
gives an infinity of biquadrates expressible as SU~S of 5 biquadrates (with two equal
pairs) ; and the identity

(z~-y*)4+(2zy+y~)*+(2zy++~)’  = 2(2*+zy+y2)’

gives an infinity of solutions of
Lz:+zFj+z~ = yf+y?

(a11  with y1 = y*).
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Each identity is an obvious corollary of the other, and either may  be
deduced from the formulae of Q 13.7.t From (21.11.9)  and (21.11.11)
it follows that

(21.11.13) xl+y,3  = x:+y;.
Here x2,  yz are rational if x1,  y1  are rational.

Suppose now that r is given, that x1  and y1  are rational and  positive

and that
Xl

4r-iy,

is large, Then X, Y are positive, and X/ Y is nearly x1/2y,;  and x2,  y2  are
positive and x.Jya  is nearly X/2Y  or x,/4y,.

Starting now with x2,  yz in place of x1,  yr,  and repeating the argument,
we obtain a third pair of rationals x3,  ys such  that

x;+y:  = xg+y;  = x:+y:
and xs/ya  is nearly ~r/4~y,. After r applications of the argument we
obtain

(21.11.14) x;+y;  = x;+y;  = . . . = x;+y,3,

a11 the numbers involved being positive rationals, and

X2, 45, 423 > . ..> 4r-13
Y1  Y2 Y3 Yr

a11  being nearly equal, SO that the ratios ;~,/y,  (s  = 1,2,...,  r)  are certainly
unequal. If we multiply (21.11.14) by 6, where Z is the least common
multiple of the denominators of x1,  Y~,...,  x~,  Y~,  we obtain an integral
solution of the system (21.11.14).

Solutions of X:+v;  = X:+v;
cari  be deduced from the formulae (13.7.11); but no solution of

xf+y!  = x;+ya  = x;+y:
is known. And no solution of (21.11.7) is known for  k 2 5.

Swinnerton-Dyer has found a parametric solution of

(21.11.15) x:+x:+x: 1 y:+y5,+1/:

which yields solutions in positive integers. A numerical solution is

(21.11.16) 495+755+1075  = 395+925+1005.
t If we  put a = b and X = 1 in (13.7.8), we  obtsin

x = 8a3+1, y  =  ll3a3-1, u = 4a-16a’, v  =  2a+lW;

and if we  replme u by )q, md  use (13.7.2), we  obtain

w-2q)3+(2q3-1)3  = (q”Sq)3-(qS+l)3,
an  identity equivalent to (21.11.11).



21 .111 HIGHER POWERS

The smallest result of this kind for sixth powe,rs  is

(21.11.17) 3s+19s+22s = 10s+156+23S.

NOTES ON CHAF’TER XXI

3 3 5

A great deal of work has been done  on Waring’s problem during the last fifty
years, and it may be worth while to give a short summary of the results. We
bave  already  referred to Waring’s original statement, to Hilbert’s proof  of the
existence of g(k), and to the proof  that g(3) = 9 [Wieferich, Math. Annalen,  66
(1909), 99101,‘corrected  by Kempner, ibid. 72 (1912), 387-971.

Landau [ibid. 66 (1909), 10%5] proved that G( 3) < 8 and it was not until 1942
that Linnik [Comptes Rendus (Doklady)  Acad.  SC& USSR,  3 5  (1942),  1621
announced a proof  that G(3) < 7. Dickson  [Bull. Amer. Math. Soc. 45 (1939)
588-911  showed that 8 cubes suffice for a11 but 23 and 239. See G. L. Watson, Math.
Gazette, 37 (1953), 209-11, for a simple proof  that G(3) < 8 and Joum.  London
Math. Soc. 26 (1951), 153-6 for one  that G(3) < 7 and for further references.  After
Theorem 394, G(3) > 4, SO that G(3) is 4, 5, 6, or 7; it is still uncertain which,
though the evidence of tables points very  strongly to 4 or 5. See Western, ibid.
1 (1926), 244-50.

Hardy and Littlewood, in a series  of papers under the general title ‘Some
problems of partitio numerorum’, published between 1920 and 1928, developed
a new analytic method for the study of Waring’s problem. They found Upper
bounds for G(k) for any k, the first being

(k-2)2k-1+5,

and the second a more complicated function  of k which is asymptotic to k2k-2
for large k. In particular they proved that

(a) G(4) Q 19, G(5) < 41, G(6) < 87, G(7) < 193, G(8) < 425.
Their method did not lead to any new result for G(3); but they proved that
‘almost all’ numbers are sums of 5 cubes.

Davenport, Actu Math. 71 (1939), 123-43, has proved that almost a11 are sums
of 4. Since numbers 9m&4  require  at least 4 cubes, this is the final result.

Hardy and Littlewood aho found an asymptotic formula for the number of
representations for n by 8 kth powers, by means  of the SO-called ‘singular  series’.
Thus r,.,,(n), the number of representations of n by 21 biquadrates, is approxi-
matelv

(the later terms of the series  being smaller). There is a detailed account of a11
this work (exoept on its ‘numerical’ side)  in Landau, Vorlemmgen,  i. 235-339.

As regards g(k), the best results known, up to 1933, for small k, were

g(4)  < 37, g(5)  < 58, g(6)  Q 478, g(7)  < 3806, g(8) < 31353
(due to Wieferich, Baer, Baer, Wieferich, and Kempner respectively). Al1  these
had been found by elementary methods similar to those used in §§21.1-4.  The
results of Hardy and Littlewood made it theoretically possible to find an Upper
bound for g(k) for any k, though the calculations required for comparatively
large k would have been impracticable. James, however, in a paper published
in Tram. Amer. Math. Soc. 36 (1934), 395-444, succeeded in proving that

(b) g(6)  < 183, g(7)  ,i 32% g(8) <  595.

He also found bounds for g(9) and g( 10).
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The more recent  work of Vinogradov has made it possible to obtain much
more satisfactory results. Vinogradov’s earlier researches on Waring’s problem
had been published in 1924, and there is an account  of his method in Landau,
VorZesungerL,  i. 340-58.  The method then used by Vinogradov resembled that
of Hardy and Littlewood in principle,  but led more rapidly to some of their
results and in particular to a comparatively simple proof of Hilbert’s theorem.
It could  also  be used to find an Upper  bound for g(k), and in particular to prove
that

In his later  work Vinogradov made very important improvements ,  based primarily
on a new and powerful  method for the estimation of  certain trigonometrical  sums,
and obtained results which are, for large k, far  better t’han  any known before.
Thus he proved that

(cl G(k) < 6klogk+(4+log216)k;

SO that G(k) is at most of order klog k. Vinogradov’s proof was afterwards
simplified considerably by Heilbronn [Acta  arithmetica,  1 (1936),  212-211,  who
improved (c) to

(4 G(k) < Gklogk+(4+31og(3+;)jk+3.

It follows from (d) that

G(4) < 67, G(5) < 8% G(6) < 113, G(7) < 137, G(8) < 163.

These inequalities are inferior to (a) for k = 4, 5, or 6; but better when k > 6
(and naturally far better for large values of k).

More has been proved since  concerning the cases k = 4, 5, and 6: in particular,
the value of G(4) is now known. Davenport and Heilbronn [Pro~.  London Math.
Xoc. (2) 41 (1936),  143-501  and Estermann (ibid. 126-42) proved independently
that G(4) < 17. Finally Davenport [Ann&  of Math. 40 (1939),  731-471 proved
that G(4) < 16, SO that, after Theorem 395, G(4) = 16; and that any number
not congruent to 14 or 15 (mod 16) is a sum of 14 biquadrates. He also proved
[Amer. Journal of Math. 64 (1942),  199-2071  that G(5) < 23 and G(6) < 36:
Hua had proved that G(5) < 28, and Estermann [Acta  arithmetica,  2 (1937),
197-2111  a result of which G(6) < 42 is a particular case.

It was conjectured  by Hardy and Littlewood that

except  when k = 2m  and m > 1, when G(k) = 4k; but the truth or falsity of
these conjectures is still undecided, except  for k = 2 and k = 4.

Vinogradov’s work has also led to very remarkable results concerning g(k).
If we know that G(k) does  not exceed some Upper  bound d(k), SO that numbers
greater than C(k) are represontable by a(k)  or fewer kth powers, then the way
is open  to the determination of an Upper  bound for g(k). For we have only to
study the representation  of numbers up to C(k), and this is logically, for a given
k, a question of computation.  It was thus that James determined the bounds
set out in (5);  but the results of such  work, before Vinogradov’s, were  inevitably
unsatisfactory, since  the bounds (a) for G(k) found  by Hardy and Littlewood
are (except  for quite small values of k) much  too large, and in particular largcr
than the lower bounds for g(k) given by Theorem 393.
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I f 0) = 2”  + [(+Y1 - 2
is the lower bound for g(k) assigned  by Theorem 393, and if, for the moment,
we take C(k)  to be the Upper bound for G(k) assigned by (d), then -(JC)  is ofmuch
higher order of magnitude than G(k). Theorem 393 gives

g(4)  2 1% g(5)  à 37, g(6)  > 73, g(7)  > 143, g(8)  > 279;
and i(k)  > G(k) for le > 7. Thus if k > 7, if a11  numbers from C(k)  on are
representable by G(k) powers, and a11 numbers below C(k) by g(k)  powers, then

g(k)  = g(k).
And it is not necessary to determine the C(k) corresponding to this particular
G(k); it is sufficient to know the C(k) corresponding to any G(k) Q g(k),  and in
particular to C(k) = g(k).

This type of argument has led to an ‘almost complete’ solution of the original
form of Waring’s problem. The first, and deepest, part of the solution rests on
an adaptation of Vinogradov’s method. The second depends on an ingenious
use of a ‘method of ascent’,  a simple case of which appears in the proof,  in 3 21.3,
of Theorem 390.

Let us Write
A = [(3Yl9 B = 3k-2”A, D  =  [(+)k].

The final result is that

te) g(k) = 2”+A-2

for a11 k for which Ic > 5 and

(f) B < 2k--A-2.

In this case the value of g(k) is fixed by the number

n = 2kA-1  = (A-1)2”+(2”-l).lk

used in the proof  of Theorem 393, a comparatively small number representable
only by powers of 1 and 2. The condition (f) is satisfied for 4 < k < 200000
[Stemmler, Math. Comptation  18 (1964), 144-61  and may  well be true for a11
k> 3.

It is known that B # 2k-A-1  and that B # 2k-A (except for k = 1).
If B > 2k--A+  1, the formula for g(k) is different. In this case,

g ( k )  =  2”+A+D-3  i f  2” < A D + A + D

and g ( k )  =  2k+A+D-2  i f  2k  =  A D + A + D .

It is readily shown that 2k  < AD+A + D.
Most of these results were found independently by Dickson  [Amer. Journal

of Math. 58 (1936). 521-9, 530-51  and Pillai [Journal Indian Math. Soc. (2) 2
(1936), 16-44, and Proc.  Indian  Acad. Sci. (A), 4 (1936), 2611.  They were com-
pleted by Pillai [ibid. 12 (1940), 30-401  who proved that g(6) = 73, by Rubu-
gunday [Journal Indian  Math. Soc. (2) 6 (1942), 192-81  who proved that
B # 2k-A, by  Niven  [Amer. Journal of Math. 66 (1944), 137-431  who proved
(e)  when B = 2k-A-2,  a case previously unsolved, and by Jing-run  Chen
[Chinese  Math.-Acta 6 (1965), 105-271  who proved that g(5) = 37.

The solution is now complete except for k = 4, and for the uncertainty whethcr
(f) cari be false  for any k. The best-known  inequality for 4 is

19 < g(4) < 35:

5591 z
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the upper bound hcre is due to Dickson [Bull. Ametican  Math. Soc. 39 (1933),
701-271.

It Will  bc observed that (except  when k = 4) thére is much  more uncertainty
about the value of C(k) than about that of g(k); the most striking case is k = 3.
This is natural, since the value of G(k) depends on the deeper properties of the
whole sequence  of integers, and that of g(k) on the more trivial properties of
special numbers near the beginning.

3 21.1. Liouville proved, in 1859, that g(4) < 53. This Upper bound was im-
proved gradually until Wieferich, in 1909, found the Upper bound 37 (the best
result arrived  at by elementary methods). We have already referred to Dickson’s
later proof  that g(4) < 35.

References to the older literature relevant to this and the next few sections
Will  be found in Bachmann, ïViedere Zahlentheorie,  ii. 328-48, or Dickson, H&tiy,
ii, ch. xxv.

$8 21.2-3. See the note on $ 20.1 and the historical note which precedes.
8 21.4. The proof  for g(6) is due to Fleck. Maillet proved the existence of g(8)

by a more complicated identity than (21.4.2); the latter is due to Hurwitz.
Schur found a similar proof  for g( 10).

8 21.5. The special numbers n considered here were observed by Euler  (and
probably by Waring).

# 21.6. Theorem 394 is due to Maillet and Hurwitz, and Theorems 395 and 396
to Kempner. The other lower bounds for G(k) were investigated systematically
by Hardy and Littlewood, Proc. London Math. Soc. (2) 28 (1928), 618-42.

a$  21.7-8. For the results of these sections see Wright, Journal London Math.
Soc. 9 (1934), 267-72, where further references  are given; Mordell, ibid. 11 (1936),
208-18; and Richmond, ibid. 12 (1937), 206.

Hunter, Journal London Math. Soc. 16 (1941), 177-9 proved that 9 < w(4) < 10:
we have incorporated in the text his simple proof  that v(4)  > 9.

$8 21.9-10. Prouhet [Comptes Rendus Paris, 33 (1851), 2251 found the first non-
trivial result in this problem. He gave a rule to separate the first jk+l  positive
integers into j sets of jk members, which provide  a solution of (21.9.3) with B  = j*.
For a simple proof  of Prouhet’s rule,  see Wright, Proc. Edinburgh Math. Soc.
(2) 8 (1949), 138-42. See Dickson, History,  ii, ch. xxiv, and Gloden and PalamB,
Bibliographie des Multigrades (Luxembourg, 1948),  for general references.
Theorem 408 is dueJo Bastien [Sphinx-Oedipe 8 (1913), 171-21  and  Theorem 409
to Wright [Bull. American Math. Soc. 54 (1948), 755-71.

$ 21.10. Theorem 410 is due to Gloden [Mehrgradige Gleichungen,  Groningen,
1944, 71-901.  For Theorem 411, see Tarry, L’intermédiaire dea math&naticiens,
20 (1913), 68-70, and Escott,  QuurterZy  Journal of Math. 41 (1910), 152.

A. Létac  found the examples

[l, 25, 31, 84, 87, 134, 158, 182, 1981,

= [2, 18, 42, 66, 113, 116, 169, 175, 1991,
and

[*12,  +11881,  *20231,  &20885,  f23738],

= [&436,  f11857,  *20449,  *20667,  f23750],,

which show that  P(k, 2) = k+l for k = 8 and k = 9: See A. Létac,  Gaz&a
Maternatica  48 (1942), 68-69, and A. Gloden, lot.  cit.

3 21.11. The most important result in this section is Theorem 412. The rela-
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tiens  (21.11.9)-(21.11.12)  are due to Vieta; they were used by Fermat to find
solutions of (21.11.14) for any  T  (see Dickson, Histcry,  ii. 550-l). Fermat assumed
without proof that a11  the pairs zg, ya  (8 = 1,2,...,  r)  would be different. The first
complete  proof was found by Morde&  but not published.

Of the other  identities and equations which we quote, (21.11.4) is due to
Gérardin  [L’intermédiaire de8 math. 19 (1912),  71  and the corollary to Mahler
[Journal London Math. Soc. 11 (1936),  136-S], (21.11.6) to Sastry [ibid. 9 (1934),
242-61, the parametric solution of (2 1.11.15) to Swinnerton-Dyer [Froc.  Cambridge
Phil.  Soc. 48 (1952),  516-81, (21.11.16) to Moessner [Froc.  Ind. Math. Soc. A 10
(1939),  296-3061, (21.11.17) to Subba Rao [Journal London Math. &“Oc.  9 (1934),
172-31,  and (21 .11.5)  to Norrie. Patterson found a further  solution and Leech  6
further solutions of (21.11.2) for k = 4 [Bull. Amer. Math. Soc. 48 (1942),  736 and
Proc. Cambridge PhiZ.  Soc. 54 (1958),  554-51. The identities quoted in the foot-
note to p. 333 were found by Fauquembergue and Gérardin  respectively. For
detailed references  to the work of Norrie and the last two authors and to much
similar work,  sec  Dickson, H&ory,  ii. 650-4.  Lander and Parkin [Math. Compututkm
21 (1967),  101-31  found the result  which disproves Eule.r’s  conjecture for k = 5,
8 = 4.
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THE SERIES OF PRIMES (3)

22.1. The functions i+(x) and #(z).  In this chapter we return to
the problems concerning the distribution of primes of which we gave
a preliminary account in the first two chapters.  There we proved
nothing except Euclid’s Theorem 4 and the slight extensions contained
in $9  2.1-6. Here we develop the theory much  further and, in particular,
prove Theorem 6 (the Prime Number Theorem). We begin, however,
by proving the much  simpler Theorem 7.

Our proof  of Theorems 6 and 7 depends upon the properties of a
function Z/(X)  and (to a lesser extent) of a function 6(z).  We writet

(22.1.1)

and

(22.1.2) $(x)  =pm;l%  P =m&w

(in the notation of 5 17.7). Thus

$(lO) = 3log2+2log3+log5+log7,

there being a contribution log 2 from 2, 4, and 8, and a contribution
log 3 from 3 and 9. If pm is the highest power of p not exceeding x,
logp  occurs m times in I+~(X).  Also pm is the highest power of p which
divides any  number up to x, SO that

(22.1.3) #(x) = 1% U(x),

where U(x) is the least common multiple of a11 numbers up to x. We
cari  also express I&X)  in the form

(22.1.4)

The definitions of 8(z)  and $(z are more complicated than that of r(z),  but)
they are in reality more ‘natural’ functions. Thus #(z)  is, after (22.1.2),  the
‘sum function’ of A(n), and R(n)  bas (as we saw in $ 17.7) a simple generating
function. Tho generating functions of 8(x),  and still more of x(z), are much  more
complicated. And even the arithmetical definition of $Qz),  when written in the
form (22.1.3),  is very  elementary and natural.

t Throughout this chapter z (and y and t)  are not necessarily integral. On the other
hand, m, R, h, k, etc., are positive integers and p, as usual,  is a prime. We suppose
always that z > 1.
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Since p2 < 2, p3 < x,... are equivalent to p < xh, p < xi,..., we have

(22.1.5) $(x) = ~(x)+8(x”)+~(x*)+... = 17!qxl/m).

The series  breaks off when xllm < 2, i.e. when

It is obvious from the definition that 8(x) < x log x for x > 2. A fortiori
cqxl’“)  < xl’m log x < xt log x

if m 3 2; and m~26(Xl’m)  = O{x*(logx)2},
/

since there are only O(logx)  terms in the series.  Hence

THEOREM  4 13 : z)(x) = 6(x) + O{x*(log LX)“}.

We are interested in the order of magnitude of the functions. Since

n(x)  = z 1,
P$X

%Xl  =Dxw9

it is natural to expect  8(z)  to be ‘about  loge times’ ?T(Z). We shall  see later  that
Ibis  is SO. We prove next that ~(CC)  is of order 2,  SO that Theorem 413 tells us that
I,/J(z)  is ‘about the same  as’ 8(z)  when x is large.

22.2. Proof  that 8(x)  and #(x)  are of order x. We now prove

THEOREM 414. The functions 8(z)  and I&X)  are of order x:
(22.2.1) Ax < 8(x) < As, Ax < $(x)  < Ax (x > 2).

It is enough, after Theorem 413, to prove that

(22.2.2) 8(x) < Ax
a n d

(22.2.3) #(x)  > As (x 2 2).

In fact, we prove a result a little more precise than (22.2.2), viz.

THEOREM 415: 9(n) < 2nlog2for ail  n > 1.

By Theorem 73,

M = Pm+l)!  _ (2m+1)(2m)...(m+2)
m! (m+l)! - m !

is an integer. It occurs twice in the binomial expansion of (If 1)2nZ+1
and SO 2M < 22m+r  and M < 22m.

If mf 1 < p < 2m+  1, p divides the numerator but not the denomi-
nator of M. Hence

Ln+l<~2m+lp)lM
and

79(2m+1)-4(m+1) = 1 logp < log M. < 2mlog  2.
mt1<p<2na+l
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Theorem 415 is trivial for n = 1 and for n = 2. Let us suppose it
true for all n < no- 1. If n, is even, we have

19(n,)  = 9(n,-1)  < 2(n,-l)log2  < 2n,log2.

If no  is odd, say  n, = 2m+l,  we have

8(n,)  = 9(2m+  1) = 9(2m+l)-C+(m+  l)+&m+  1)

< 2mlog2+2(m+l)log2

= 2(2m+l)log2  = 2n,log2,

since  m+l < n,. Hence Theorem 415 is true for n = n, and SO, by
induction, for a11 n. The inequality (22.2.2) follows at once.

We now prove (22.2.3). The numbers 1, 2,...,  n include just [n/p]
multiples of p, just [n/p”] multiples of p2, and SO on. Hence

THEOREM  416 : n! = JJ pihP),
P

where

We Write

SO that, by Theorem 416,

(22.2.4)

Each term in round brackets  is 1 or 0, according as [2n/p”l]  is odd or
even. In particular, the term is 0 if pTlb  > 2n. Hence

(22.2.5)

and IogN  = 2 lcJogp  <
p<2n

b y  ( 2 2 . 1 . 4 ) .  B u t

logp = s4W
(22.2.6)

and SO #(2n) > nlog2.

For z > 2, we put n = [&z]  > 1 and have

$(4  3 W4 > nlog2 > &log2,

which is (22.2.3).
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22.3. Bertrand’s postulate and a ‘formula’ for primes. From Theorem
414, we cari  deduce

THEOREM  417. There ia a number  B such  thut,  for every x > 1, there is a prime
p aatisjying x < p < Bx.

For, by Theorem 414,

c,x  < 8(x) < c*x (x > 2)

for some fixed Ci,  C,.  Hence

and SO there is a prime between x and C,x/C,.  If we put B = max(C,/C,,  2),
Theorem 417 is immediate.

We cari, however, refine our argument a little to prove a more precise  result.

THEOREM 418 (Bertrand’8 Postulate).  Ij n 2  1, there ti at lea& one prime p
such  thut

(22.3.1) n <p < 2n;

that ti, ijp, is the r-th prime,

(22.3.2) Pr+1 < 2Pr

for every r.

The two parts of the theorem are clearly equivalent. Let us suppose that,
for some n > 2O = 512, there is no prime satisfying (22.3.1). With the notation
of $22.2, let p be a prime factor of N, SO that k,  > 1. By our  hypothesis, p < ut.
.If in  < p < n,  we have

2p  < 2n < 3p, p2  > $n2  > 2n

and (22.2.4) becomes

k, = [9-2[;]  =  2 - 2  =  0.

Hence p < +n for every prime factor p of N and SO

(22.3.3) Xl%P  < 2 logp = a(@)  < $nlog 2
PIN p45n

by Theorem 415.
Next, if k,  > 2, we have by (22.2.5)

210gp < k,logp  < log(2n), P < JW)

and SO there are at most J(2n) such  values of p. Hence

kp~_kplogp  G 1/(2n)log@n),

and S O

(22.3.4) logN  ~k~~gp+kp~~yl~gp  ~~~log~+4(2n)log(2n)
P

< $8  log 2 + J( Pn)log(  2n)
by (22.3.3)

On the other hand, N is the largest term in the expansion of 22n  = (l+  l)*“,
SO that

22” = 2+(2r)+(t)+...+(2,2-1)  < 2nN.



344 T H E  S E R I E S  O F  P R I M E S [Chap. XXII

Hence, by (22.3.4),

2nlog2  < log(2n)+logN  < ~n10g2${1+J(2n)}10g(2n),

which reduces to

(22.3.5) 2nlog2  g 3{1+J(2n)}log(2n).

We now Write 5= log(n/512)
lOlog2 > 0,

SO that 2n = 2r0(lf3).  Since  n > 512, we have 5 > 0. (22.3.5) becomes

2i0(l+5)  < 30(  25+5c+  l)(  1 + [),
whence

255 G 30.2-5(1+2-5-~C)(I+{)  < (IL2-5)(1+2-S)(i+[)  < i+{.

But 256  =  exp(511og2)  >  1+5[1og2  > l+[,

a contradiction. Hence, if n > 512, there must be a prime satisfying (22.3.1).
Each  of the primes

2, 3, 5, 7, 13, 23, 43, 83, 163, 317, 631

is less than twice its predecessor in the list. Hence one  of them, at least, satisfies
(22.3.1) for any n < 630. This completes the proof  of Theorem 418.

We prove next

THEOREM  419. Ij

a =  2 p,  lO-*“’ =  ~02030005000000070...,
m=1

we have

(22.3.6) p, = [lOZ”o!]-  10~“-‘[10*“-‘cu].

B y  (2.2.2), p,  < 22”  = 42’~1

and SO the series  for 01 is convergent. Again

0 < 10’“_=$+rpm  10-2” < n>=;+r42”:‘10-2’-’

= ,~~+10)2m-1  < (QJ2+) < i%  < 1.6

Hence [102”a]  = 102” 5 p,lo-sm
W8=1

snd, similarly,
12-l

[102”-’ a] T 102”-’ 2 p,,, 10-S”.
WL=1

It follows that

[102”or]- 10~“-‘[102”%]  = 102’l(  nrprn  10-Z”‘-  lzYpm  10-Z’)  _ pn.

Although (22.3.6) gives a ‘formula’ for the nth prime p,,, it is not a very  useful
one.  TO calculate pn from this formula, it is necessary to know the value of 01
correct to 2% decimal  places; and to do this, it is necessary to know the values
of Pl,  P2,“.1  p*.



22.3 (420)] T H E  S E R I E S  O F  P R I M E S 345

There are a number of similar formulae which suffer from the same defect.
Thus, let us suppose that r is an integer greater than one.  We have then

P, < 9

by (22.3.2). (Indeed, for r 2 4, this follows from Theorem 20.) Hence we may
write

and we cari  deduce that

p,, = [rn2iYi]-T2~-l[r(lE-1)20i]

by arguments similar to those used above.
Any  one  of these formulae (or any similar one)  would attain a different status

if the exact value of the number 01  or 01~  which occurs in it could be expressed
independently of the primes. Thero seems no likelihood of this, but it cannot
be ruled out  as entirely impossible.

22.4. Proof of Theorems 7 and 9. It is easy to deduce Theorem ‘i
from Theorem 414. In the first place

8(x) = 1 logp  < logx 1 1 = ~(x)logz
PQX P$Z

and SO

(22.4.1)

On the other hand, if 0 < 6 < 1,

8(x)  > 2 logp > (l-6)logz
XQ<p<X

2 1
xl-a<p<x

= (1-8)10g+(x)-7f(x’-*)}  3 (1-6)logx{.rr(x)-x1-8}

and SO

(22.4.2) W) Ax
dx)  G xl-*+(l-*)logx  < logx’

IVe  cari  now prove

THEOREM 420. wd  vw77(x)----N-.
log x log x

After Theorems 413 and 414 we need only consider the first assertion.
It follows from (22.4.1) and (22.4.2) that

1 < 441%X xl-6logx  1
’ 8(x) G 6(x) +1-6-
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For any  E > 0, we cari  choose 6 = 6(r)  SO that

[Chap. XXII

and then choose x0  = x,(6,  E)  = x0(c)  SO that

x1-6  log 5 Alogx
i+(x)  < d < &

for a11 x > x0.  Hence
1 < +0%x
’ 44

< l+E

for a11 x > x0.  Since  l is arbitrary, the first  part of Theorem 420 follows
at once.

Theorem 9 is (as stated in 5 1.8) a corollary of Theorem 7. For, in
the first place,

A Pn = x(p,)  < z
logp?L

p, > Anlog p, > An log n.

A PSecondly, n = à > w
logPn’

SO that dp,  < $ < An, P, < An2,
n

and p, < Anlogp, < Anlogn.

22.5. Two formal  transformations. We introduce here two
elementary forma1 transformations which Will  be useful throughout this
chapter.

THEOREM 421. Suppose that cl, cz,...  is a sequence  of numbers, thut

w = ;r c,,
nqt

ami  that f(t) is any  function  of t. Then

(22.5.1) J>f(n)  =n~~-lC(n){f(n)-f(n+l)}+C(x)f([xl).

If, in addition, ci  = 0 for j < n,t  and f (t) bas a continuous  derivative  for
t > n,,  then

(22.5.2) ,T;crL f (4 = WfW-  r WfW dt.
nl

If we Write  N = [xl,  the sum on the left of (22.5.1) is

C(l)f(l)+{C(2)-C(l)lf(2)+...+{C(N)-C(N-l)lf(N)

= C(l){f(l)-f(2)}+...+C(N-l)(f(N-l)-f(N)}+C(N)~(N).
t In our  applications, n, = 1 or 2.  If n, = 1, there is, of couise,  no restriction on the

c,. If 7L1  = 3, we  have e,  = 0.



22.5 (422-3)] THE SERIES OF PRIMES 341

Since C(N) = C(z), this proves (22.5.1). TO deduce (22.5.2) we observe
that C(t) = C(n) when n < t < n+l and SO

n+1

Also C(t) = 0 when t < n,.
If we put c,  = 1 and f(2) = l/t, we have C(z) = [x] and (22.5.2)

becomes

2
2 PIL~+j$w

n?L<x 1

= logx+y+E,

where

is independent of x and

E = m @-+l)  &-“-[“l  =s t2 X
z 5

Thus we have

THEOREM 422:
c

1- = logxfyf0
n?L<x

where y is a constant (knoum as Euler’s  constant).

22.6. An important sum. We prove first the lemma

THEOREM 423: = O(x)  (h > 0).

Since log t increases with t,  we have, for n > 2$

Hence

1

< x m loghu
s
u2 du = Ax,

1

since the infinite  integral is convergent. Theorem 423 follows at once.
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I f w e p u t h =  l , w e h a v e

&logn  = [x]logx+O(x)  = xlogx+o(x).

But, by Theorem 416,

in the notation of $ 17.7. If we remove the square brackets  in the last
sum, we introduce an error less than

7LJIzw)  = vw = O(x)<

and SO
c

;A(n)  ‘n~logn+O(x)  = xlogx+o(x).
n<x .

If we remove a factor  x, we have

THEOREM 424:
2

A(n)~ =
n

logx+O(l).
?L<X

From this we cari  deduce

THEOREM 425:
c

EV = logx+o(l).
P<X P

For

cn<s

If, in (22.5.2),  we putf(t)  = l/t an c,,  = A(n), SO that C(x) = #(x),d
we have

c
x w

n ::  z
A!$++j-T&

2

and SO, by Theorems  414 and 424, we have

(22.6.1) CE  w _
s

t2 dt - logx+O(l).
2

From (22.6.1) we cari  deduce

(22.6.2) lim{#(4/x)  < 1, lim{#(x)/x)-  2 1.
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For, if ~{+!J(~)/~} = l+S, where 6 > 0, we have #(x) > (1+$3)x  for
a11 x:  greater than some z,,.  Hence

fydt>  J?d,,  J qdt  > (l+~*)logx-A,
2 2 x0

in contradiction to (22.6.1). If we suppose that lim{#(z)/x)  = l-6,
we get a similar contradiction.

By Theorem 420, we cari  deduce from (22.6.2)

THEOREM 426:

If44 1+Xl tends to a limit as x + 00,  the Emit  is 1.

Theorem 6 would follow at once if we could prove that ~(2)
l
-?--
log x

tends to a limit. Unfortunately this is the real difficulty in the proof
of Theorem 6.

22.7. The sum Ip-1  and the product n (l-p-1). Since

(22.7.1) 1O<log-  - -
( i

1
1 - p - 1  p = $+g3+...

1
<  g2+$+...  =  - -

2P(P-1)

and c 1
P ( P - 1 )

is convergent, the series

must be convergent. By Theorem 19, zp-’  is divergent and SO the
product

(22.7.2) TI  (1-p-l)
must diverge also (to zero).

From the divergence of the product (22.7.2) we cari  deduce that

T(X) = o(z) ,
i.e.  almost a11 numbers are composite, without using any of the results of 13 22.1-6.
Of course, this result is weaker than Theorem 7, but the very  simple proof  is of
some interest.

If W(Z,T) is the number of numbers which (i) do not exceed x and (ii) are not
divisible by any of the first r primes pi,  p*,...,  pr, then

n(x)  < w(x,r)+1.
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and, by Theorem 261,

whcre  i, j,... arc unequal and run from 1 to r. The number of square brackots is

lf 0 0I+i f.,.  = 2’

snd thc crror  introduccd by the removal  of a square  brackct is less than 1.
Hcnce

a n d

w(x,r)  < x- Cf+ C&-...+2r  = zfi (l-327

Since  n (1 --p-l)  diverges to zero,  we cari,  for any 6 > 0, choose  r = Y(P)  SO  that

n (1-P)  < 4c
PGP.

a n d ?T(x)  < *rr+2r+r < EX
for r 2 X~(E, r) = X~(E). Thus ~(2)  = o (5).

We cari prove the divergence of II(  1 -p-l) independently of that of
2 p-’ as follows. It is plain that

the last sum  being extended over a11 n composed of prime factors p < N.
Since a11 n < N satisfy this.condition,

by Theorem 422. Hence  the product (22.7.2) is divergent.
If we use the results of the last  two sections, we cari  obtain much

more exact information about Ip-l. In Theorem 421, let us put
cp = logp/p,  and c, = 0 if n is not a prime, SO that

C(x) = 2 F = logzf7(2),
pzz

where T(X)  = O(1) by Theorem 425. With f(t) = l/logt,  (22.5.2) be-
cornes

(22.7.3) 2
PG2 2

= loglogz+B,+E(z),
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where

and

(22.7.4) E(z) = $$-

z
Hence we have

THEOREM 427 :
c

1
- = loglogx+B,+o(1),

PdX
P

where B, is a constant.

22.8. Mertens’s theorem. It is interesting to push our study of
the series  and product of the last section a little further.

THEOREM 428. In Theorem 427,

(22.8.1) B, = y+2  (h+-;)  ii)’
where y is Euler’s constant.

THEOREM 429 (Mertens’s  theorem)  :

As we saw in 9 22.7, the series  in (22.8.1) converges. Since

z;+ pg(l-;) =,ik(l-~).+;),
PSX P4X

Theorem 429 follows from Theorems 427 and 428. Hence it is enough
to prove Theorem 428. We shall assume thatt

(22.8.2) y = -l?‘(l) = - re-zlogrdx.
0

If 6 2 0, we have

-1og (l-- 1 1 - -  1
1 1

o < ~-p1+6  p14 < 2pqp1+s-  1) <
2P(P-1)

by calculations similar to those of (22.7.1). Hence the series

Jw = 2 (l%(  l+$) +p&)
P

t Sec,  for example,  Whittaker  and  Watson, Modem  analysis, ch. xii.
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is uniformly convergent for a11 6 > 0 and SO

[Chap. XXII

as 6 -+  0 through positive values.
We  now suppose 6 > 0. By Theorem 280,

where
w = cm-1%  a1 f@,

g(S) = zp-l-8.
P

If, in Theorem 421, we put cP = l/p  and c, = 0 when n is not prime,
we have

C(x) = 2 f = loglogx+B,+E(x)
PSX

by (22.7.3). Hence, iff(t) = t@, (22.5.2) becomes

pzzp-l-s  = x-“C( x)+6 J t-l-W(t) dt.
2

Letting x -+  CO, we have

g(S) = 6 fbqt)  dt
2

= 6 ut-l-fqloglog  t+B,)  ci+6  +E(t)  dt.
2 2

Now, if we put t = eula,

6 rt-‘-sloglogt  dt = de-ulog($  du = -y-1ogS
1

by (22.8.2), and 6 j%-S  dt = 1.
1

Hence

g(S)+logS-&+y  = 6 f+%(t) dt-6  j t-l-s(loglogt+B,)  dt.
2‘ 1

New, by (22.7.4), if T = exp(l/&),

A< ASlogT+p
log T

< A&-+0
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as S -+  0. Also
2

IJ
t-l-*(loglogt+B,)  dt < / t-l(,loglogt,+  ,B,,)  dt = A,

1 1

since  the integral converges at t = 1. .Hence

g(S)+log6  + &-y
as 6 + 0.

But, by Theorem 282,
log~(1+6)+log6  -f 0

as S -f 0 and SO F(S)  + B,-y.
Hence B, = y+W%
which is (22.8.1).

353

22.9. Proof of Theorems 323 and 328. We are now able to prove
Theorems 323 and 328. If we Write

fl(n)  = ~(nwl%log  n fi(n)  = 44>n ney  loglog n ’
we have to show that

lAfi = 1, limf&n) = 1.

It Will  be enough to find two functions  F,(t), F*(t), each  tending  to 1 as
t + 00 and such  that

(22.9.1) fi(n)  3 F,(logn), fi(n)  G--L
F,(log n)

for all n > 3 and

(22.9.2) f2(nj)  2 F,(.i), f&)  < &
2

for an infinite  inereasing sequence  n2, na, n4,...  .
By Theorem 329, fi(n < 1 and SO the second inequality in

(22.9.1) follows from the first; similarly for (22.9.2).
Let  P,,  p2,..., p,-, be the primes which divide n and which do not

exceed logn and let P~-~+~,,.., p, be those which divide n and are
greater than logn. We have

and SO

5591 A&
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Hence the first part of (22.9.1) is true with
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Fi(t)  =  eylogt l - -( :)““‘J-JlA).

But, by Theorem 429, as t + 00,

Fi(t)  N l-f uogt  = 1 +o -2 + 1.
( ) ( )log t

TO prove the first part of (22.9.2),  we Write

SO that log ni  = j8(ei)  < Ajej

by Theorem 414. Hence

loglognj < A,+j+logj.

Again p$rjl-P-j-l)  > rJ (l-p-i-‘) = $+-

by Theorem 280. Hence

f2(nj)  =
4%)

nj eY loglog ni  = loglog ne-y ,,(g$q

2 rlj+l)(~~j+logj)rJï+)  = F,(j)

(say).  This is the first part of (22.9.2). Again,  as j -f 00,  c(j+l)  + 1
and, by Theorem 429,

22.10. The number of prime factors of n. We define  w(n) as the
number of different prime factors of n, and R(n) as its total number of
prime factors; thus

w(n) = r, Q(n)  = a,+a,+...+a,,

when n = pît...pF.
Both w(n) and Q(n)  behave irregularly for large n. Thus bath func-

tions are 1 when n is prime, while

Q(n) = log
log 2

when n is a power of 2. If

n = P11)2**.Pr
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is the product of the first  r primes, then

4%)  = r = +r), Qn = WP,)
and SO, by Theorems 420 ad 414,

355

44 -, WP,) log n&--
1%  Pr loglog n

(when n -+  00  through this particular sequence  of values).

THEOREM 430. The awerage  order  of both w(n) and Q(n) is loglogn.
More precisely
(22.10.1) &J(n)  = ~wogx+B,~+ow,

(22.10.2) nJIzQ(n)  = xloglogx+B,x+o(4,

where B,  is the number in Theorems  427 and  428 an&

4 = B,+ c
1

p PO’

since  there are just [z/p] values of n < x which are multiples of p.
Removing the square brackets, we have

(22.10.3) SI =
c

-+O{n(z)) = xloglogx+B,z+o(x)
P$S P

by Theorems 7 and 427.
Similarly

(22.10.4)

so that h-4 = 2’  [xiPm],
where 2 denotes summation’over a11 pm < x for which m > 2. If we
remove the square brackets in the last sum the error introduced is less
than

15-G  L2
’ 2g; - 1Cr(x)-+4  = o (x)

log 2
by Theorem 413. Hence

x,-s,  = x 1’ p-+0  (2).
The series
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is convergent and SO
Z’p-”  = B,-&+O(l)

as x -+  CO.  Hence
As,-s,  = (B,-B,)x+o  (2)

and (22.10.2) follows from (22.10.3).

[Chap. XXII

22.11. The normal order of w(n)  and Q(n). The functions w(n)
and Q(n) are irregular, but have a definite ‘average order’ loglogn.
There is another interesting sense in which they may  be said to have
‘on the whole’ a definite order. We shall say,  roughly, that f(n) has
the normal order F(n) iff(n) is approximately F(n) for almost all values
of n. More precisely, suppose that

(22.11.1) (l-P(n)  <f(n)  < (l+E)w)

for every positive E and almost a11 values of n. Then we say  that the
normal order off(n) is .8’(n).  Here ‘almost ah  is used in the sense of
$5  1.6 and 9.9. There may  be an exceptional ‘infinitesimal’ set of n for
which (22.11.1) is false,  and this exceptional set Will  naturally depend
upon E.

A function may  possess an average order, but no normal order, or
conversely. Thus the function

f(n) = 0 (n even), f(n) = 2 (n odd)

has the average order 1, but no normal order. The function

f(n) = 2m (n = Sm), f(n)  = 1 (n # 29

has the normal order 1, but no average order.

THEOREM 431. The  normal order of w(n) and Q(n)  is loglogn. More
precisely, the number of n, not exceeding x, for which

(22.11.2) If(n)-loglogn j  > (loglogn)~+“,

where f(n) is w(n) or Q(n), is o(x) for every positive 6.

It is sufficient to prove that the number of n for which

(22.11.3) If(n)-1oglogzI  > (loglogx)~+~

is o(x); the distinction between loglog n and loglog x has no importance.
For loglog2- 1 < loglog~  < loglogx

when xlie  < n < x, SO that loglog n is practically loglogx for a11 such
values of n; and the number of other values of n in question is

O(xl/fq  = 0 (x).
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Next, we need only consider  the case f(n) = w(n). For Q(n) 3 w(n)
and, by (22.10.1) and (22.10.2),

n&P(nk4n)>  = W-4.

Hence the number of n < x for which

Q(n)-w(n) > (loglog2)i

is o((loglogx)“)  = o(x);
SO that one  case of Theorem 431 follows from the other.

Let us consider the number of pairs of different prime factors p, q of
n (i.e. p # q),  counting the pair q, p distinct from p, q. There are
w(n) possible values of p and, with each  of these, just w(n) - 1 possible
values of q. Hence

w(n){w(n)-1)  =Pzml  = 2 1- 11.
P#c?

Pm p*ln

Summing over a11 n < x, we have

since the series  is convergent. Next

Hence, using (22.10.1),  we have

(22.11.4) &k44’ = xpzz$+ o(~~oglogx).,
Now

(22.11.5)

since, if pq < x, then p < x and q < x, while, if p < 4x and q < 4x,
then pq < x. The outside terms in (22.11.5) are each

{loglog x+ O( 1)}” = (loglog x)2+  O(loglog x)

and therefore

(22.11.6) n&fW(n,}”  = x(loglog x)2+  0(x loglog x).
,
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It follows that

(22.11.7) 2 (W(n)-loglogZ}2
n<+

=~~~W(n)>2-210glog~nS3cW(n)+[~l(loglogs)2
,

= x(loglog  X)2+ O(2  loglog 2)-

-2 loglog2{ZrloglogZ+o(X)}+(Z+o(  l)}(loglog2)2

= z(loglog  X)2- 2z(loglog  2)2+x(loglog  x)2+  O(2  loglog 2)

= 0(x  loglog Z)

by (22.10.1) and (22.11.6).
If there are more than qx numbers, not exceeding x, which satisfy

(22.11.3) withf(n)  = w(n), then

Il~~w(n)-loglogx}2  3 7jz(loglogx)1+~,

which contradicts (22.11.7) for sufficiently large x; and this is true for
every positive 7. Hence  the number of n which satisfy (22.11.3) is
o(x); and this proves the theorem.

22.12. A note on round numbers. A number is usually called
‘round’ if it is the product of a considerable number of comparatively
small factors. Thus 1200 = 2*. 3. 52 would certainly be called round.
The roundness of a number like 2187 = 3’ is obscured by the decimal
notation.

It is a matter of common observation that round numbers are very
rare; the fact may  be verified by any one  who Will  make a habit of
factorizing numbers which, like numbers of taxi-cabs or railway- - - -
carriages, are presented to his attention in a random manner. Theorem
431 contains  the mathematical explanation of this phenomenon.

Either of the functions w(n) or fi(n) gives a natural measure of the
‘roundness’ of n, and each  of them is usually about loglogn, a function
of n which increases very slowly. Thus loglog 10’ is a little less than 3,
and loglog lOBo  is a little larger than 5. A number near 16’ (the limit
of the factor  tables) Will  usually have about 3 prime factors; and a
number near lOso  (the number, approximately, of protons in the uni-
verse) about 5 or 6. A number like

6092087 = 37.229.719

is in a sense a ‘typical’ number.
These facts seem at first very surprising, but the real paradox lies a

little deeper. What is really surprising is that most numbers should
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have SO many  factors and not that they should have SO few. Theorem
431 contains  two assertions, that w(n) is usually not much  larger than
loglogn and that it is usually not much  smaller; and it is the second
assertion which lies deeper and is more difficult  to prove. That w(n)
is usually not much  larger than loglogn cari  be deduced from Theorem
430 without the aid of (22.11.6).t

22.13. The normal order of d(n). If n = ppp%‘...p+r,  then

w(n) = r,  Q(n) = u~+u,+...+u,,  d(n) = (l-j-~,)(l+a~)...(l+a,).
Also 2<1+a,(2a

and 2dn)  < d(n) < 2*(n).

Hence,  after Theorem 431, the normal order of log d(n) is

log 2 loglog n.

THEOREM 432. If l is positive, then

(22.13.1) 2(1-~hi3lOS~  < d(n) < 2(l+dlOlIlO~~

for aimost a11 numbers n.

Thus d(n) is ‘usually’ about

We  cannot quite  say  that ‘the normal order of d(n) is 210glogn’  since thc
inequalities (22.13.1) are of a less precise  type than (22.11.1); but one
may  say,  more roughly, that ‘the normal order of d(n) is about 21°glogn’.

It should be observed that this normal order is notably less than
the average order logn. The average

is dominated, not by the ‘normal’ n for which d(n) has its most common
magnitude, but by the small minority of n for which d(n) is very much
larger than 1ogn.J  The irregularities of w(n) and Q(n) are not suffi-
ciently violent to produce a similar effect.

22.14. Selberg’s Theorem. We  devote  the next three sections to
the proof  of Theorem 6. Of the earlier results of this chapter we use

t Roughly, if X(Z)  were  of higher order than loglog z, and w(n) were larger than
x(n)  for a fixed proportion of numbers less than 2, then

,&4”’
.

would be larger than a fixed multiple of ~X(Z),  in contradiction to Theorem 430.
:  See the remarks at the ends of $8  18.1 and 18.2.
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only Theorems 420-4 and the fact that

(22.14.1) vw  = WL

which is part of Theorem 414. We prove first

THEOREM 433 (Selberg’s  Theorem):

[Chap. XXII

(22.14.2) $b(x)logx+  2 A(n)#  ; = 2x10g2+0(z)
n<x 0

and

(22.14.3) ~~~~(n)logn+m~^(m)R(n)  = 2xlogz+O(z).
,

It is easy to see that (22.14.2) and (22.14.3) are equivalent. For

c, n(w(;) = ~$nl&/(m)  =m&)(m)A(n)
and,  if we put c,  = A(n) andf(t)  = logt in (22.5.2),

(22.14.4) n515(n)logn  = #(x)logx- x w
s
t dt = #(z)logz+O(x)

2
by (22.14.1).

In our proof  of (22.14.3) we use the Mobius function p(n) defined in
3 16.3. We recall  Theorems 263, 296, and 298 by which

(22.145) $&d) = 1 (n = l), &4d) = 0 (n  > 1),

(22.14.6) A(n) = - dQ4410gd, logn  = dz A(d)-

Hence

(22.14.7) 2 A( ” = - &A(h) 1 p(d)logd
hln 0 anIh

= - ~/4d)W$W  = - &/WwW($

= Nn)log n+ dq A410g2d.
Again,  by (22.14.5),

but, for n > 1,
cdl1

/L(d)logZ  ; = log%,
0

= 2 p(d)(log2d - 2 log 2 log d)

= 2A(n)log  x-A(n)log n+hkznA(h)A(k)
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by (22.14.6) and (22.14.7). Hence, if we write

we have

361

by (22.14.4). TO complete the proof  of (22.14.3),  we have only to show
that

(22.14.8) S(x) = 2xlogx+o(x).

By (22.14.5),

= 2 P~4[~]{h32(~)-~2)~,
since  the number of n < x, for which d 1 n, is [x/d]. If we remove the
square brackets,  the error introduced is less than

by Theorem 423. Hence

(22.14.9) S(x) = x 2 ~(10g’(~)-y2]+O(x).
a42

Now, by Theorem 422,

(22.14.10) 2 y[w(~)+)

= 2 %ylo$)-  y)(  ,c, i+o(Z)]*
The sum of the various error terms is at most

(22.14.11) c ;(log($  ++(;)  = o(i) zIog(;)  +O(l)
d<x 1

= O(1)
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by Theorem 423. Also

[Chnp. XXII

by (22.14.5), (22.14.6),  and Theorem 424. (22.14.8) follows when we
combine (22.14.9)-(22.14.12).

22.15. The functions  R(z)  and T’(e).  After Theorem 420 the Prime
Number Theorem (Theorem 6) is equivalent to

THEOREM 434: vw  - x9

and it is this last theorem that we shall prove. If we put

d&) = X+&x)
in (22.14.2) and use Theorem 424, we have

(22.15.1) R(x)logx  + 1 A(n)R  E = O(x).
n<z 0

Our abject is to prove that R(x) = o(x).7
If we replace n by m and x by x/n  in (22.15.1),  we have

Hence

logx R(x)log  x + 2 -
n<z

that is

R(x)log2x = -~A(n)~(~)logn+_~A(m).l(n)~(~)+O(xlogx),

t Of course,  this would be a trivial deduction  if R(z) > 0 for a11 z (or if R(x) < 0
for ail  2).  Indeed, more would follow, viz. R(z)  = O(z/log  5). But it is  possible, SO far
as we know at this stage of our argument, that R(z) is usually of order z, but that its
positive and negative  values are so distributed that the sum  over 7t  on the left-hand
side of (22.15.1)  is of opposite sigu to the first term and largcly offsets  it.
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whence

(22.15.2)
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where

and

by (22.14.3).
We now replace the sum  on the right-hand side  of (22.15.2) by an

integral. TO do SO, we shall prove that

(22.15.3)

We remark that, if t > t’ 3 0,

Il~(t)/-Iw)II  G lR(t)-w’)/  = Iw-w’)-t+t’l
< #(t)+(t’)+t-t’  = F(t)-F(t’),

where F(t) = #(t)+t  = o(t)

and F(t) is a steadily increasing function of t.  Also

(22.15.4)

We prove (22.15.3) in two stages. First, if we put
n

Cl = 0, c,  = a,-2 r log t at,
?&-1

f(n)  = I$)l
in (22.5.1),  we have

[Zl
C(x) = 2 a,&-2 f log t dt = O(z)

n<s
and

= ,Jil cqIR(;L)I  - lR($l)l)  + c(x)R(i)
= oj& n&)-“(&)))+O(z)  = O(xlogx)

by (22.15.4).
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Hence

< SF(f)-P(~))logtdt  < (n-l)(F(s)--F(J).
n-1

= O( nC, (J(i)-$-&)))  + O(xlog4 = O(xlog4.

Combining (22.15.5)  and (22.15.6)  we  have (22.15.3).
Using  (22.15.3)  in  (22.15.2)  we  have

z
(22.15.7) /R(x) jlog%  < 2 SI OIR ; logt dt+O(xlogx).

1

We cari  make the significance of this inequality a little clearer if we
introduce a new function,  viz.

(22.15.8) V(t) = e-fR(et) = e-$h(ef)-1

= e-g[,~e,n(n))-l’

If we Write  x = et  and t = Xe-T,  we have

on changing the order of integration. (22.15.7)  becomes

(22.15.9) 421v(f)i  < 2 /j /J’(v),  W5+0(0
8  0
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Since  $(CC) = O(x),  it follows from (22.15.8) that V(f)  is bounded as
,$  -+  00.  Hence we may  Write

since  both these Upper  limits exist. Clearly

and

Using  this in (22.15.9),  we have

and SO IV(0  / d If+0  (1).
Hence
(22.1511) 01  < s.

22.16. Completion of the proof of Theorems 434, 6, and 8.
By (22.15.8),  Theorem 434 is equivalent to the statement that V(t) -+  0
as 5 -f CO,  that is, that 01  = 0. IVe  now suppose that 01  > 0 and prove
that, in that case, /3  < 01  in contradiction to (22.15.11). We  require two
further lemmas.

THEOREM 435. There  is a fixed  positive number  A,, such  that, for every
positive tl, f2, we have

If we put x = et,  t = eV, we have

by (22.6.1). Hence
6 62 b
J“vo  dv = J V(v) drl- J V(v) d71  = O(l)

%s 0 0

and this is Theorem 435.

THEOREM 436. lfyo  > 0 and V(rlo)  = 0, then
ci

I /Vrlo+dl dT < &2+O(,~1).
0
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We may  Write  (22.14.2) in the form

$w%  x+ mJ/w4A(n)  = 22 1%  x+  O(x).

If z > q, > 1, the aame  result is true with z,,  substituted for 2. Sub-
tracting, we have

twl% ~-~kJlog  x0+ ,,<,,^b4N4  = 2(~log~-~,log~,)+O(~).

Since  A(n) > 0,

0 < twl%X-~( x  0  x(J  < 2(210gX-z,10g2,)+0(2),I?)l  g
whence

IR(s)logz-R(z,)log2,1  < zlogz-2,logz,+0(2).

We put x = egofr, x0  = eTo, SO that R(x,)  = 0. We have, since
O<T<O!,

Iu,o+T)l  G l-($k)“-T+o(:)

and SO
= l-e-++O(l/qJ  < ~+O(l/q~)

We now Write

take 5 to be any  positive number and consider the behaviour of V(q)
in the interval  5 < 7 < c+S-CY. By (22.15.8),  V(v)  decreases steadily
as 7 increases, except  at its discontinuities, where V(q)  increases.
Hence, in our  interval, either V(v,,)  = 0 for some Q, or V(v)  changes
sign at most once. In the first case, we use (22.15.10)  and Theorem 436
and have

c+s
1

4
IV(rl)l  a77 = 4’+qo/‘+  pw drl

5 Tp+Ly
< ~~~o~5)+~~2+~(~+s-10-a)+oo

= ct(8+)+0(1)  = cGfo(1)

for large 5,  where &=d-- < a .
( 126

In the second case, if V(q)  changes sign just once at 71  = qr in the
interval  5 < 7 < <-@-CL, we have
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while, if V(q) does not change sign at all in the interval, we have
5+6-C6

[
i

lU7)l  drl  = c+p+?)  drll  -==c  4
t.

by Theorem 435. Hence
c+s 2;+6-a
j  IV(rl)l  d?7 = \ a”a+o (l),
5 i;

+ ‘T” IV(T)1  d77 < 24+~2+o(l)  =
5+s-a

Hence we have always
c+s

s lV1(7))l  d? < a’a+O(l),

where o(1) -f 0 as 5 -f ck.  If M = [f/S],

Hence

in contradiction to (22.15.11). It follows that E = 0, whence we have
Theorem 434 and Theorem 6. As we saw on p. 10, Theorem 8 is a trivial
deduction  from Theorem 6.

22.17. Proof of Theorem 335. Theorem 335 is a simple conse-
quence of Theorem 434. We  have

by Theorem 423 and SO

M(x)log  x = &  p(n)log  n+ w.

By Theorem 297, with the notation of $ 22.15,
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(say). Now, by (22.14.5),

[Chap. XXII

By Theorem 434, R(x) = o(x); that is, for any  E > 0, there is an integer
N = N(E)  such  that /R(x) 1 < EX  for a11  x > N.  Again,  by Theorem 414,
I@X)~  < Ax for a11 x 3 1. Hence

< EXIOg(x/N)+Ax{logx-log(x/N)}+O(x)

= EXlogx+O(x).

Since  E is arbitrary, it follows that X4 = o (xlogx) and SO

-M(z)logx  = s,+s4+o(x)  = o(xlogx),

whence Theorem 335.

22.18. Products of k prime factors. Let k > 1 and consider a
positive integer n which is the product of just k prime factors, i.e.

(22.18.1) n = i%PZ*..l)k.

In the notation of Q 22.10, Q(n) = k. We Write  T&(X)  for the number
of such  n < x. If we impose the additional restriction that a11 the p
in (22.18.1) shall  be different, n is quadratfrei and w(n) = Q(n) = k.
We Write  rk(x)  for the number of these (quadratfrei) n < x. We shah
prove

THEOREM 437 : Tk(x) - Tk(x)-;~~;~;;;’ (k > 2).

For k = 1, this result would reduce to Theorem 6, if, as usual,  we
take O! = 1.

TO prove Theorem 437, we introduce three auxiliary functions,  viz.

Lk(x)  = c ’
P,%**Pk'

ITktx)  = I:  ‘9 8k(5)  = 2 10~h~2~-~k)~

where the summation in each  case extends over ail  sets of primes
pl,  p2,...,  p, such  that p,...p,  < x, two sets being considered different
even if they differ only in the order of the p. If we Write  c,  for the
number of ways in which n cari  be represented in the form (22.18.1),
we have

nk(x)  = 1 %>
?L<a:
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If ail  the p in (22.18.1) are different, c, = k!, while  in any case
c,  < k!. If n is not of the form (22.18.1),  c,  = 0. Hence
(22.182) k!n,(x)  < ri,(z)  < k!Tk(X) (k > 1).

Again,  for k > 2, consider those n which  are of the form (22.181) with
at least two of the p equal. The number of these n < x:  is T~(Z)--Q(Z).
Every such  n cari  be expressed in the form (22.18.1) with pkel = &
and SO

(22.18.3) q$4-?&)  < 2 1 < I: 1 = rlk-l(X)
P,Pa...Pi-I<X P,Pz...Pt-l$x

(k 2 2).
We shall prove below that

(22.18.4) I~~(X)  - kz(loglogx)k-l (k > 2).

By (22.5.2) withf(t)  = logt, we have

8k(x)  = &(x)logx- x nk@)

s
t d t .

Now T~(X)  < z and SO, by (22.18.2),  Ilk(t;  = O(t)  and

Hence, for k > 2,

(22.18.5)

x nk(t)st ctt =  O ( x ) .

by (22.18.4). But this is also  true for k = 1 by Theorem 6, since
II,(z)  = r(z).  When we use (22.18.5) in (22.18.2) and (22.18.3),
Theorem 437 follows at once.

We have now to prove (22.18.4). For a11 k > 1,

kh+ltX) = I:  (l”g(212P2...Pk+l)+10g(1)11731)4...Pk+~)+
P,...PxtlGx

+...+l%tPlP,...Pk)}

= O+l) 2
P,...PX+l~z

log(P21)3**.pk+l) = ckfl)  2 Ip*(;)

P,SZ

and,  if we put L,(s) = 1,

Lk(x) = PL.,<,  m’ = p& i Lk-1(;)-
Hence, if we write

fktx)  = ak(d -kxLk-,(x),
we have

(22.18.6) Icfk+ltd  = (k+l)  2 .fk(;)*
P<X

6681 sb
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We  use this to prove by induction that

(22.187) j-k(X)  = o{x(loglogx)~-1)  (k > 1).

First fi(X) = 8,(x)-x  = 79(x)-x = o(x)

[Chap.  XXII

by Theorems 6 and 420, SO that (22.187) is true for k = 1. Let us
suppose (22.187) true for k = K > 1 SO that, for any c > 0, there  is
an x0  = z,(K,  l ) such  that

l&(x)  1 < rx(loglog  xJK-l

for a11 x > x0.  From the definition off,(x),  we see that

&(X)l  < D

for 1 < x < x,,,  where D depends only on K and E. Hence

< 2Ex(loglog  x)K

for large enough x, by Theorem 427. Again

Hence, by (22.18.6),  since Kfl < 2K,

&+l(x)I  < 2x{2r(loglogx)zi+D}  < &x(loglogx)”

for x > x1  = X~(E,  D, K) = X~(C,  K). Since  E is arbitrary, this implies
(22.18.7) for k = K+l and it follows for a11 k > 1 by induction.

After (22.18.7),  we cari  complete the proof  of (22.18.4) by showing
that

(22.18.8) Lk(x)  - (loglogx)k (k > 1).

In (22.18.1),  if every pi < x lik, then n < x; conversely, if n < x, then
pl < x for every i. Hence I

( 2 a)“<  Lk(x)  < (2  j)*.
p<x’1” pax

But, by Theorem 427,

c 1 - loglog 2,
c

1 log x

PQX i p<sw
- N log k N loglogx
P ( )

and (22.18.8) follows at once.
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22.19. Primes in an interval. Suppose that E > 0, SO that

(22.19.1) n(x+Ex)-7r(x)  =
logx~~l+,-ï&+4&)

The la&  expression is positive provided that z > Z,,(E).  Hence there is always
a prime p satisfying

(22.19.2) x < p < (1SE)Z

when 2 > P+,(E). This result may  be compared  with Theorem 418. The latter
corresponds to the case E = 1 of (22.19.2), but holds for ail z 2 1.

If we put 6 = 1 in (22.19.1), we have

(22.19.3) 7f(2z)-7r(x)  A --$0 -2.-  wn(x).log x ( )log x

Thus, to a first approximation, the number of primes between x and 2x is the
same  as the number less  than 2. At first sight this is surprising, since  we know
that the primes near 2 ‘thin out’  (in some vague sense)  as z increases.  In fa&,
7r(  2x)- 27r(z) + -CO  as x + 00 (though we cannot prove this here), but this is
not inconsistent with (22.19.3), which is equivalent to

7r(22)-2?r(x)  = 0(37(x)}.

22.20. A conjecture about the distribution of prime pairs
p,p+2.  Although, as we remarked in $ 1.4, it is not known whether
there is an infinity of prime-pairs p, p+2,  there is an argument which
makes it plausible that

(22.20.1)

where PS(x)  is the number of these pairs with p < x and

(22.20.2)
~=,(y~~=rI(~-~&).

We take x any  large positive number and write

N =pTTzP.<
We shah  cal1 any integer n which is prime to N, i.e. any n not divisible
by any  prime p not exceeding 4x,  a special integer and denote by S(X)
the number of special integers which are less than or equal to X. By
Theorem 62,

S(N) = +(N)  = N n (1-k)  = NB(x)
P<dX

(say). Hence the proportion of special integers in the interval  (1, N)
is B(x). It is easily seen  that the proportion is the same  in any com-
plete set of residues (mod N) and SO in any set of rN  consecutive
integers for any  positive integral r.
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If the proportion were the same  in the interval  (1, x), we should have

S(x)  = X&X)  - z
by Theorem 429. But this is false. For every composite n not exceed-
ingx has a prime factor not exceeding 1/x  and SO the special n not exceeding
x:  are just the primes between 4~ (exclusive) and x (inclusive). We
have then

S(x)  = 7-r(x)-Tr(lix)  - Gx

by Theorem 6. Hence the proportion of special integers in the interval
(1, x) is ahout  @Y  times the proportion in the interval  (1, N).

There is nothing surprising in this, for, in the notation of $ 22.1,
1ogN = 8(4x) M 4x

by Theorems 413 and 434, and SO N is much  greater than x. The
proportion of special integers in every interval  of length N need not
be the same  as that in a particular interval  of (much  shorter) length z.t
Indeed, S(&)  = 0, and SO in the particular interval  (1,4x)  the propor-
tion is 0. We observe that the proportion in the interval  (N-x, N)
is again  about l/log  x, and that in the interval  (N- dx,  N) is again  0.

Next we evaluate  the number of pairs n, nf2 of special integers for
which n < N. If n and n-+2 are both special, we must have

n s 1 (mod2), n F 2(mod3)
and n E 1,  2, 3 ,..., p-3, orp-1 (modp) (3 < p < 4x).
The number of different possible residues for n (mod XT)  is therefore

3JIdz(~-2)  =  &N  n (1-y)  =  N&(x)
3GP44X

(say)  and this is the number of special pairs n, n+2 with n < N.
Thus the proportion of special pairs in the interval  (1, h’)  is B,(x)

and the same  is clearly true in any  interval  of rN  consecutive  integers.
In the smaller interval  (1, x), however, the proportion of special integers
is about *eY  times the proportion in the longer intervals. We may
therefore expect (and it is here only that we ‘expect’ and cannot prove)
that the proportion of special pairs n, n+ 2 in the interval  (1, x) is
about (Bey)”  times the proportion in the longer intervals. But the special
pairs in the interval  (1, x) are the prime pairs p, p+  2 in the interval
(4x,x).  Hence we should expect that

P,(x)-P,(dx)  - ~e2YxBl(x).
t Considerations  of this kind explain  why the mua1 ‘probability’  arguments lead to

the wrong asymptotic value for n(r).
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By Theorem 429,

But B,(x)
(Bo)2=

as x + 03.  Since  P2(dx)  = O(dz , we have finally the result (22.20.1).)

NOTES ON CHAPTER XXII
$3  22.1, 2, and 4. The theorems of these sections are essentially Tchebychef’s.

Theorem 416 was found independently by de Polignac. Theorem 415is an improve-
ment of a result of Tchebychef’s; the proof we give here is due to Erd& and Kalmar.

There is full  information about the history of the theory of primes in Dickson’s
History  (i, ch. xviii), in Ingham’s tract (introduction and ch. i), andin Landau’s
Hundbuch (3-102 and 883-5); and we do not give detailed references.

There is also  an elaborate account  of the early  history  of the theory in Torelli,
Sulla  total&  dei numeri  primi,  Atti dellu R. Acad.  di Napoli (2) 11 (1902),  l-222;
and shorter ones  in the introductions to Glaisher’s Facto-r table for the sixth million
(London, 1883) and Lehmer’s table referred to in the note on § 1.4.

5 22.3. ‘Bertrand% postulate’ is that, for every n > 3, there is a prime p satis-
fying n < p < 2n-2.  Bertrand verified this for 72  i 3,000,OOO  and Tchebychef
proved it for a11  n > 3 in 1850. Our Theorem 418 states a little less but the proof
could  be modifled  to prove the better result. Our proof is due to ErdBs,  Actu Litt.
Ac. Sci. (Szeged), 5 (1932),  1948.

For Theorem 419, see L. Moser, Math. Mag. 23 (1950),  163-4. See also  Mills,
Bull. AmeriFn  Math. Soc. 53 (1947),  604; Bang, Norek.  Mat. Ttiskr.  34 (1952),
117-18; and Wright, American  Math. Monthly, 58 (1951),  616-18 and 59 (1952), 99
and Journal London Math. Soc. 29 (1954),  63-71.

4 22.7. Euler  proved in 1737 that zp-i  and n (1-p-l) are divergent. ’
5 22.8. For Theorem 429 see Mertens, Journal fiir Math. 78 (1874),  46-62. For

another proof (given in the first two editions  of this  book) see Hardy, Journal
London Math. Soc. 10 (1935),  91-94.

8 22.10. Theorem 430 is stated, in a rather  more precise  form, by Hardy and
Ramanujan, Quarterly Journal of Math. 48 (1917),  76-92 (no. 35 of Ramanujan’s
Colleeted  papers). It may be older, but we cannot  give any reference.

$5  22.11-13. These theorems were first proved by Hardy and Ramanujan in
the paper referred to in the preceding note. The proof given here is due to Turan,
Journal London Math. Soc. 9 (1934),  274-6, except  for a simplification suggested
to us by Mr. Marshall  Hall.

Turan [ibid. 11 (1936),  125-331 has generalized the theorems in two directions.
31  22.14-16. A. Selberg gives his theorem in the forms

a n d

logp  = 2210gx+0(x)
P<S

x wP+pp~zlogPlogp’  = 22logx+O(x).
P<X
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These may be deduced without difficulty  from Theorem 433. There are two
essentially different methods by which the Prime Number Theorem may be
deduced from Selberg’s theorem. For the first, due to Erd5s  and Selberg jointly,
sec  Proc.  Xat.  Acud. Sci. 35 (1949), 37&84  and for the second, due to Selberg
alone, see Ann&  ofMath.  50 (1949), 305-13. Both methods are more ‘elementary’
(in the logical sense) than the one  we give, since they avoid the use of the integral
calculus at the cost of a little complication of detail. The method which we use
in 8 22.15 and 16 is based  essentially on Selberg’s own method. For the use of
#(z)  instead of 8(z),  the introduction of the integral  calculus and other minor
changes, sec  Wright, Proc. Roy. Soc. Edinburgh, 63 (1951), 257-67.

For an alternative exposition of the elementary proof  of Theorem 6, sec  van der
Corput,  Col.+~@  8ur  la;  théorie dee nmnbrm  (Liège 1956). See Errera (ibid.
111-18) for the shortest (non-elementary) proof.  The same volume (pp. 9-66)
contains  a reprint of the original paper in whioh de la Vallée Poussin (contem-
poraneously  with Hadamard, but independently) gave the first proof  (1896).

For an alternative to the work of 8 22.15, see V. Nevanlinne, Soc. Sci. Fennica:
Comm. Phye. Math. 2713 (1962), l-7. The same author (Ann. Acud. Soi. Fennicae
A 1343 (1964), l-52) gives a comparative account of the various  elementary
proofs.

5 22.18. Landau proved Theorem 437 in 1900 and found more detailed asymp
totic expansions for T~(Z) and T~(Z)  in 1911. Subsequently Shah (1933) and
S. Selberg (1940) obtained results of the latter type by more elementary means.
For our  proof  and references  to the literature, see Wright, Proc. Edinburgh Math.
Soc. 9 (1954), 87-90.

$22.20. This type of argument cari  be applied to obtain similar conjectural
asymptotic  formulae  for the number of prime-triplets and of longer blocks  of
primes. These formulae  agree very  closely with the results of counts. They
were found by a different method by Hardy and Littlewood [Acta Math. 44
(1923), l-70 (43)],  who give references  to work by Staeckel  and others. Sec  also
Cherwell, Quarterly Journal of Math. (Oxford), 17 (1946), 46-62, for anot,her
simple heuristic method.

The ideaa  in this section had their origin in correspondence  and conversation
with the late Lord Cherwell. See Cherwell and Wright, Quart. J. of Math. 11
(1960), 60-63, for a fuller account. See also Polya,  Amer. Math. Monthly  66
(1959), 375-84.

The formulae  agree very  well with the results of counts. D. H. and E. Lehmer
have carried these out (on the SWAC computer) for various prime pairs, triplets,
and quadruplets  up to 40 million ; and the resulting tables have been deposited
in the Unpublished  Math. Tables file of Math. tables  and other aida to computa-
tien. Leech bas oarried out similar counta  (on EDSAC),  including certain quintu-
pleta  and sextupleta, up to 10 million.
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KRONECKER’S THEOREM

23.1. Kronecker’s theorem in one dimension. Dirichlet’s
Theorem 201 asserts  that, given any set of real numbers 6,, QS,...,  4,
we cari  make na,, ni&,..., n4 all differ from integers  by as little as we
please. This chapter is occupied  by the study of a famous theorem
of Kronecker which has the same  general character as this theorem of
Dirichlet but lies considerably deeper. The theorem is stated, in its
general form, in $ 23.4, and proved, by three different methods, in
$$23.7-9.  For the moment we consider only the simplest case, in which
we are concerned with a single 9.

Suppose that we are given two numbers 6 and (Y.  Can we jlnd an
integer  n for which ni+-or

is nearly  an integer ? The problem reduces to the simplest case of
Dirichlet’s problem when O L  = 0.

It is obvious at once that the answer is no longer unrestrictedly
affirmative. If 6 is a rational number a/b,  in its lowest terms, then
(na) = ni+-[ns]  has always one  of the values

012 b - l
’ b’ b’ “” b’

If 0 < 01  < 1, and O L  is not one  of (23.1.J),  then

(r = 0, l,..., b)

bas  a positive minimum p, and n6-cu  cannot differ from an integer by
less than p.

Plainly p < 1/26,  and p -f 0 when b + 00; and this suggests the truth
of the theorem which follows.

THEOREM 438. If 19 is irratimul,  CY is arbitrary,  and N and E are posi-
tive, then there are integers n and p such  thd n > N and

( 2 3 . 1 . 2 ) Id-p-or] < E.

We  cari  state  the substance of the theorem more picturesquely by
using the language of 5 9.10. It asserts that there are n for which (na)
is as near as we please to any number in (0, l), or, in other words,
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THEOREM 439. If8 is irrational,  then the set of points (ni+)  is dense in
the interval  (0, l).t

Either of Theorems 438 and 439 may  be called ‘Kronecker’s theorem
in one  dimension’.

23.2. Praofs of the one-dimensional theorem. Theorems 438
and 439 are easy, but we give several proofs, to illustrate different ideas
important in this field of arithmetic. Some-of our arguments are, and
some are not, extensible to space of more dimensions.

(i) By Theorem 201, with lc  = 1, there are integers n, and p such
that In,  8-p/ < E. The point (n,9)  is therefore within a distance E of
either 0 or 1. The series  of points

(nlW, Ch@, P,% ---,

continued SO long as may  be necessary, mark a chain (in one  direction
or the other) across  the interval (0,l) whose meshI  is less than l .
There is therefore a point (kn,8) or (n8)  within a distance c of any  CY

of (0,l).
(ii) We cari  restate  (i) SO as to avoid an appeal to Theorem 201, and

we do this explicitly because the proof  resulting Will  be the mode1 of
our first proof  in space of several dimensions.

We have to prove the set S of points P,,  or (na), with n = 1, 2, 3,...,
dense in (0,l). Since  8 is irrational, no point falls at 0, and no two
points coincide. The set has therefore a limit  point, and there are pairs
(P,,  P,,+,),  with r > 0, and indeed with arbitrarily large r,  as near to
one  another as we please.

We cal1 the directed stretch P,,  P,,,,  a vector. If we mark off a stretch
P,  Q,  ewal to P,,  %+, and in the same  direction, from any  P,,  then Q
is another point of S, and in fact Pm+,..  It is to be understood, when we
make this construction, that if the stretch P,  Q would extend beyond
0 or 1, then the part of it SO extending is to be replaced by a congruent
part measured from the other end 1 or 0 of the interval (0,l).

There are vectors of length less than E, and such  vectors, with r > N,
extending from any  point of S and in particular from Pl.  If we measure
off such  a vector  repeatedly, starting from PI, we obtain a chain of
points with  the same  properties as the chain of (i), and cari  complete
the proof  in the same  way.

t We may seem to bave lost something when we state the theorem thus (viz. the
inequality 1~  > N). But it is plain that, if there are points of the set as near  as we
pleaae  to every  (Y  of (0, l), then among these points there are points for which n is m
large as we  pleaae.

$ The distance between consecutive  points of the chain.
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(iii) There is another interesting ‘geometrical’ proof  which cannot be
extended, easily  at any rate, to space  of many dimensions.

We represent  the real numbers, as in 0 3.8, on a circle of unit circnm-
ference instead of on a straight line. This representation automatically
rejects  integers; 0 and 1 are represented by the same  point of the circle
and SO, generally, are (n6) and na.

TO say  that S is dense on the circle is to say  that every O L  belongs to
the derived set S’. If 01  belongs to S but not to S’, there is an interval
round 01  free from points of S, except  for 01  itself, and therefore there
are points near 01  belonging neither to S nor to S’. It is therefore suffi-
tient to prove that every 01  belongs either to S or to S’.

If O L  belongs neither to S nor to S’, there is an interval  (a-6,  OL+~‘),
with positive 6 and ?Y, which contains  no point of S inside if; and among
all such  intervals there is a greute.st.t  We cal1 this maximum interval
I(a)  the excluded interval  of a.

It is plain that, if 01  is surrounded by an excluded interval  I(a),  then
01-6  is surrounded by a congruent excluded interval I(<Y-8).  We thus
defme  an infinite  series  of intervals

I(a), I(v$), I(ci-29), . . .

similarly disposed about the points a, 01-8,  CY-  2$,...  . No two of these
intervals cari  coincide, since 6 is irrational; and no two cari  overlap, since
two overlapping intervals would constitute together a larger interval,
free from points of S, about one  of the points. This is a contradiction,
since the circumference cannot contain  an infinity  of non-overlapping
intervals of equal length. The contradiction shows that there cari  be
no interval  I(U),  and SO proves the theorem.

(iv) Kronecker’s own proof  is rather more sophisticated, but proves
a good deal more. It proves

THEOREM 440. If 9 is irrationub,  (Y  is arbitrary, and N positive, then
there is an n > N and a p for  which

IN-p-ai < ;.

It Will  be observed that this theorem, unlike Theorem 438, gives a
definite bound for the ‘errer’  in terms of n, of the same  kind (though
not SO precise)  as those given by Theorems 183 and 193 when O L  = 0.

t We leave the forma1 proof.  which depends upon the construction of ‘Dedekind
sections’ of the possible values of 6 and 6’, and is of a type familiar in elementary
analysis,  to the reader.
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By Theorem 193 there  are coprime  integers q > 2N and T such  that

(23.2.1)

Suppose that Q is the integer, or one of the two integers,  such  that
(23.2.2) Iw-QI < 4.
We  cari  express Q in the form
(23.2.3) Q = vr-uq,
where u and 2,  are integers and
(23.2.4) Iv1  G ik*
Then ~(VI%-u-a)  = v(q9-r)-(qa-Q),
and therefore

by (23.2.1),  (23.2.2),  and (23.2.4). If now we  write

n = q-b P = d-%
then
(23.26) N<ik<n<#Qq

and In&p-a] < Id+-u-a]+ lq6-ri  < :+a  = z < 3,
n

by (23.2.1),  (23.2.5),  and (23.2.6).
It is possible to refine  upon the 3 of the theorem, but not, by this

method, in a very  interesting way. We return to this question in
Ch. XXIV.

23.3. The problem of the reflected ray. Before we p&ss to the
general  proof  of Kronecker’s  theorem, we shall  apply  the special  case
already proved to a simple but entertaining problem of plane geometry
solved  by Konig  and Szücs.

The Bides  of a square are reflecting mirrors.  A ray of light leaves a
point inside  the square and is reflected repeatedly in the mirrors. What
is the nature of its  path ?t

THEOREM  441. Either  the path is cloeed  and periodic or it i8 dense
in the  squure,  passing  arbitrarily  near to every point of the 8qmre.  A
necessary  and suficient  condition for periodicity  is thut  the  angle between
a 8ide  of the equare  and the initial direction of the ray 8hodd  hue  a rathud
tangent.

t It may  happen  exceptionally that the ray passes through a CUPWY of the squere.
In this  case  we assume that it  returns along  i ts  former path.  ‘MS is  the oonvention
suggested by considerations  o f  continuity.
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In Fig. 10 the parallels to the axes are the lines

x = w4, Y = m+3,
where 1 and m are integers. The thick square, of side  1, round the
origin is the square of the problem and P, or (a, b), is the starting-point.
We construct  a11  images of P in the mirrors, for direct or repeated

+ Y .

.

1
FI~.  10.

.

.

-

.

-

‘x

reflection. A moment’s thought will show that they are of four types,
the coordinates of the images of the different types being

(A) a+21, b+2m; (B)  a+% -b+2m+l;
(C) -a+21+1, b+2m; (D) -a+21+1, ++2m+l;

where 1 and m are arbitrary integers.t  Further, if the velocity at P has
direction cosines A,  ,u,  then the corresponding images of the velocity
have direction cosines

(4 A,  p;  (B)  A, -pi  (Cl  4 P; (Dl  4 -CL.
We may  suppose, on grounds of symmetry, that ÇL  is positive.

t The z-coordinate  takes  dl values derived from Q by the repeeted use of the substi-
tutions z’  = 1 -I and z’  = - 1 -z.  The figure shows the images corresponding t.o
non-negative  1 and ni.
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If we think of the plane as divided into squares of unit side,  the
interior of a typical square being

(23.3.1) 1-i <x  < l-i+ m-3 < y < m+$,
then each  square contains  just one  image of every point in the original
square - *-=cx<+, -,&<y<*;
and, if the image in (23.3.1) of any  point in the original square is of
type A, B, C, or D, then the image in (23.3.1) of any  other point in the
original square ia of the same  type.

We  now imagine P moving with the ray. When P meets a mirror
at Q, it coincides with an image; and the image of P which momentarily
coincides with P continues the motion of P, in its original direction, in
one  of the squares adjacent to the fundamental square. We  follow
the motion of the image, in this square, until it in its turn meets a side
of the square. It is plain that the original path of P Will  be continued
indefinitely in the same  line L,  by a series  of different images.

The segment of L in any  square (23.3.1) is the image of a straight
portion of the path of P in the original square. There is a one-to-
one  correspondence  between the segments of L,  in different squares
(23.3.1),  and the portions of the path of P between successive reflec-
tions, each  segment of L being an image of the corresponding portion
of the path of P.

The path of P in the original square Will  be periodic if P returns
to its original position moving in the same  direction; and this  Will
happen if and only if L passes through an image of type A of the
original P. The coordinates of an arbitrary point of L are

x = a+& y = bf,ut.

Hence  the path Will  be periodic if and only if

ht = 21, pt = 2m

for some t and integral 1,  m; i.e. if hlp  is rationul.
It remains to show that, when ~/CL  is irrational, the path of Y

approaches arbitrarily near to every point ([,q) of the square. It is
necessary and sufhcient  for this that L should pass arbitrarily near to
some image of (4,~) and suhîcient  that it should pass near some image
of (t,  7) of type A, and this Will  be SO  if

(23.3.2) la+&-E-211 < E, lb++--q-2ml  < E

for every E and 7, any  positive E, some positive t, and appropriate
integral 1 and m.
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We take t = ?lf2m-b
CL ’

when the second of (23.3.2) is satisfied automatically. The first in-
equality then becomes

(23.3.3) lm9--w-Z1  < +,

where

Theorem 438 shows that, when 8 is irrational, there are 1 and m, large
enough to make t positive, which satisfy (23.3.3).

23.4. Statement of the general theorem. We pass to the general
problem in space  of k dimensions. The num-
bers @,,  19~,..., 6, are given, and we wish to
approximate to an arbitrary set of numbers
% a2>***>  OIk> integers apart,  by equal mul-
tiples of a,, a2,..., 6,. It is plain, after $ 23.1,
that the 8 must be irrational, but this con-
dition is not a sufficient condition for the
possibility of the approximation.

Suppose for example, to fix our ideas, that
k = 2, that 8, #, LX,  p are positive and less FIG.  11.

than 1, and that 9 and $ (whether rational or irrational) satisfy a
relation atT+b++c  = 0

with integral a, b, c. Then
a.nS+b.n+

and WY +b(4)

are integers, and the point whose coordinates are (na) and (n+)  lies on
one  or other of a finite  number of straight lines.  Thus Fig. 11 shows
the case a = 2, b = 3, when the point lies on one  or other of the lines
2zf3y  = v (V == 1,2,3,4).  It is plain that, if (oi,j3)  does not lie on one
of these lines,  it is impossible to approximate to it with more than a
certain accuracy.

We shall say  that a set of numbers

51, 82>...>  &

is linearly  independent if no linear relation

a151+a2~2+...+a,~,  = 0,
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with integral coefficients, not all zero, holds between them. Thus, if
211,  P2>..‘> p, are different primes, then

%P,Y  l%P,,  ‘..>  logp,
are linearly independent; for

a,logp,+a,logp,+...+a,logp,  = 0
is pi”‘p2’...pr’  = 1,
which contradicts the fundamental theorem of arithmetic.

We now state Kronecker’s theorem in its general form.
T REOREM 442. 1’ 61,  62,  .a->  &kl  1

are lineurly  independent, cxl, 01~  ,..., ak are arbitrary, and  N and  c are
positive, then there are integers

n > N, P,,  PS>  . ..> pk
eu&  th4zi? @Ym-p,-a,l  < 0 (m = 1,2  ,...,  k).

We cari  also state the theorem in a form corresponding to Theorem
439, but for this we must extend the definitions of $ 9.10 to k-dimen-
sional space.

If the coordinates of a point P of k-dimensional space are CC~, x2,...,  xk,
and 6 is positive, then the set of points xl,  xi,...,  2%  for which

lx&--x,,J  < 6 (m = 1,2  >...,  k)

is called a neighboudwod  of P. The phrases limit  point, derivative, closed,
dense in itself,  and Perfect  are then defined exactly as in $9.10. Finally,
if we describe  the set defined by

0 < x, < 1 (m = 1,2,...,  k)
as the ‘unit cube’, then a set of points S is den.se  in the unit cube if every
point of the cube is a point of the derived set S’.

THEOREM 443. 1j  a,, 6,  ,..., 4, 1 are linearly  independent,  then the set
of points

&%h  tn62h . . . . @k)
is dense in the unit cube.

23.5. The two forms of the theorem. There is an alternative
form of Kronecker’s theorem in which both hypothesis and conclusion
assert  a little less.

THEOREM 444. If 6,,  8, ,..., 8, art? h?dy independent,  (Yly  a2 ,...,  ffk
are arbitrary, and  T and  E are positive, then  there is a real number t, and
integers p,, p, >...>  p,, such  that

t>T
and /ta,-pDm--cu,j  < E (m = 1, 2 ,...,  k).
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The. fundamental hypothesis in Theorem 444 is weaker than in
Theorem 442, since it only concerns  linear relations homogeneous in
the 6. Thus 8, = 42, 6, = 1 satisfy the condition of Theorem 444 but
not that of Theorem 442; and, in Theorem 444, just one  of the 9 may
be rational. The conclusion is also  weaker, because t is not necessarily
integral.

It is easy to prove that the two theorems are equivalent. It is useful
to have both forms, since some proofs lead most naturally to one  form
and some  to the other.

(1) Theorem 444 implies  Theorem 442. We suppose, as we may,  that
every 9 lies in (0,l) and that E < 1. We apply Theorem 444, with k+  1
for k, IV+ 1 for T, and 3~  for E, to the systems

$1, 92, ***,  a,,  l; 011,  012,  **a> +, O*
The hypothesis of linear independence is then that of Theorem 442; and
the conclusion is expressed by
(23.5.1) t >N+I,
(23.5.2) Ila,,,-p,-or,1  < & (m = 1,2  ,...,  k),
(23.5.3) bPk+lI < h*

From (23.5.1) and (23.5.3) it follows that pk+l  > N,  and from (23.5.2)
and (23.5.3) that

bk+18m--%--%~  < It8m-%-%I+It-Pk+lI  < c*

These are the conclusions of Theorem 442, with n = pk+l.
(2) Themem  442 implies Thewem  444. We now deduce Theorem 444

from Theorem 442. We observe first that Kronecker’s theor6m (in
either form) is ‘additive in the or’; if the result is true for a set of Jr
and for (Y~,..., “k,  and ahO  for the same  Set of 6 and for  j!$,...,  /&,  then it
is true for the same  6 and for CI~+/L?~,  . . ,,  ak+/&. For if the differences of
p6  from IX,  and of qiJ  from /3,  are nearly integers, then the difference
of (p+q)8 from LX+/~  is nearly an integer.

If 81, &Y-,  Qk+l are linearly independent, then SO are

4-, . ..> 4 1
8 -9 -

k+l 9 k+l

We apply Theorem 442, with N = T, to the system

$1 6-,
6

. . . . -A;
6

C?+>  . ..>  ak.
k+l k+l

There are integers n > IV,  pl,. ..,  pk such  that

(23.5.4) %-pm-~  < c
Qxc+l

(m = 1,2  ,,,.,  k).
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If we take t = n/&+r, then the inequalities (23.5.4) are k of those
required, and

/ ta,+,- 121  = 0 < f.

Also t > n > N = T. We thus obtain Theorem 444, for

91, .**> @,,  &+l; al> .-.>  OLk,  os
We cari  prove it similarly for

91, -..,  &, &+l; O,  -*.>  O, ak+l,
and the full theorem then follows from the remark at the beginning of (2).

23.6. An illustration. Kronecker’s theorem is one  of those mathematical
theorems which assert,  roughly, that ‘what is not impossible Will  happen some-
times however improbable it may be’. We cari illustrate this ‘astronomically’.

Suppose that k spherical planets revolve round a point 0 in concentric co-
planar  circles,  their angular velocities being 2nw,,  2ww2,...,  2rrwk, that there is
an observer at 0, and that the apparent diameter of the inmost planet  P, observed
from 0, is greater than that of any outer  planet.

If the planets are a11  in conjunction  at time t = 0 (60 that P occults  a11  the
other planets), then their angular coordinates at time t are Swtwi,...  . Theorem 201
shows that we cari choose  a t, as large as we please, for which a11  these angles are
as near as we please to integral multiples of 27r.  Hence  occultation of the whole
system by P Will  recur  continually. This conclusion holds for aZZ angular velo-
cities.

If the angular coordinates are initially ai,  ~y~,...,  (Y~,  then such  an occultation may
never  occur. For example, two of the planets might be originally in opposition
and have equal angular velocities. Suppose, however, that the angular vebcitiea
are Eineurly  independent. Then Theorem 444 shows that, for appropriate t, as large
as we please, a11  of 23Ttw,+ci,, . . . . 2i?tw~+cQ

Will  be as near as we please to multiples of 2w;  and then occultations Will  recur
whatever the initial  positions.

23.7. Lettenmeyer’s proof of the theorem. We now suppose
that k = 2, and prove Kronecker’s theorem in this case by a ‘geo-
metrical’ method due to Lettenmeyer. When k = 1, Lettenmeyer’s
argument reduces to that used in 0 23.2 (ii).

We take the first form of the theorem, and Write  9, $ for 6,, 8,. We
may  suppose 0<9<1, O<$<l;

and we have to show that if 8, q$ 1 are linearly independent then the
points P, whose coordinates are

WL (4) (n = 1,2,...)

are dense in the unit square. No two P,,  coincide, and no P, lies on a
side of the square.

We cal1 the directed stretch

P,P,+, (n > 0, r > 0)
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a vector. If we take any point P,,  and draw a vector P,  Q equal and
paraIle  to the vector P, Pn+r, then the other end Q of this vector is a
point of the set (and in fact P,,,).  Here naturally we adopt the con-
vention corresponding to that of 0 23.2 (ii), viz. that, if P,  Q meets a
side  of the square, then it is continued in the same  direction from the
corresponding point on the opposite side  of the square.

Since no two points P,, coincide, the set (P,,)  has a’limit point; there
are therefore vectors whose length is less than any  positive E, and vectors
of this kind for which r is as large as we please. We  cal1 these vectors
E-vectors. There are c-vectors,  and c-vectors with arbitrarily large r,
issuing from every P,, and in particular from PI. If

E < min($,+, 1-6, l-d),

then a11 c-vectors issuing from PI  are unbroken, i.e. do not meet  a side
of the square.

Two cases are possible a priori.
(1) There are two E-vectors  which are not paralle1.t  In this case we

mark them off from PI  and construct  the lattice based upon PI  and the
two other ends of the vectors. Every point of the square is then within
a distance E of some lattice point, and the theorem follows.

(2) Al1 c-vectors  are parallel. In this case a11  E-vectors  issuing from
PI  lie along  the same  straight line, and there are points P,,  P, on this
line with arbitrarily large suffixes r,  s. Since PI, P,,  PS  are collinear,

and SO

or a6+b++c = 0,

8 4 1
riL[rS] r+-[r$] 1
sa-[s6] s+[s$q 1

1
r - l  =O,
s - l

where a, b, c are integers. But 6, +,  1 are linearly independent, and
therefore a, b, c are a11 zero. Hence, in particular,

or

t In the sense  of elementary geometry, where we  do not distinguish two directions
on one straight line.

5591 c c
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We cari  make s -f CO,  since  there are P,  with arbitrarily large s; and we
then obtain

which is impossible because + is irrational.
It follows that case (2) is impossible, SO that the theorem is proved.

23.8. Estermann’s proof of the theorem. Lettenmeyer’s argu-
ment may  be extended to space of k dimensions, and leads to a general
proof  of Kronecker’s theorem; but the ideas which underlie it are illus-
trated adequately in the two-dimensional case. In this and the next
section we prove the general theorem by two other quite different
methods.

Estermann’s proof  is inductive. His argument shows that the theorem
is true in space of k dimensions if it is true in space of k- 1. It also
shows incidentally that the theorem is true in one-dimensional space,
SO that the proof  is self-contained; but this we have proved already,
and the reader may,  if he pleases, take it for granted.

The theorem in its first form states that, if 6,, a2,...,  &,  1 are linearly
independent, 01r, CX~,...,  CX~  are arbitrary, and E and w are positive, then
there are integers n, pr,  p2,...,  po,  such  that
(23.8.1) n>w
and
(23.8.2) Int9m-pm-a,1  < E (m = 1,2  ,...,  k).
Here the emphasis is on large positive values of n. It is convenient
now to modify the enunciation a little, and consider both positive and
negative values of n. We therefore assert  a little more, viz. that, given
a positive é and w, and a X of either sign, then we cari  choose n and the
p to satisfy (23.8.2) and
(23.8.3) Inl  > a, signn = signX,
the second equation meaning that n has the same  sign as A. We  have
to show (a) that this is true for k if it is true for k- 1, and (b) that it is
true when k = 1.

There are, by Theorem 201, integers

s > 0, b,,  b,,  . . . . b,
such  that
(23.8.4) js9m-b,l  < & (m = 1,2  ,...>  k).
Since  8, is irrational, s8,-b,  # 0; and the k numbers

An = s~m-b*
sa,-b,
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(of which the last  is 1) are linearly independent, since  a linear relation
between them would involve one  between QI,...,  6,,  1.

Suppose first  that k > 1, and assume the truth of the theorem for
k- 1. We  apply the theorem, with k- 1 for k, to the system

513  $2, .-, #k-l (for 4, $2j...,  Qk-J,

& =  ffl-ak+,, p, =  012-%$2,  .‘.>  Pk-1  =%-l-“k+k-l

(for q, a2>...>  ak-d,

& (for ~1, A(S~,-b,)  (for A),

(23.8.5) Sz  = (~+l)[s8~-b~l+la~l (for w).

There are integers ck,  cr,  cz,...,  ck-r  such  that

(23.8.6) bk/  > '2, sign ck = sign {A(&,--b,)},

and

(23.8.7) I~~r$~-c~-fi~l  < -& (m = 1,2  >...>  k-l).
The inequality (23.8.7),  when expressed in terms of the 9, is

(23.8.8) e (&,-6,)~cm-a,1  < + (m = 1, 2 >...> k).
k k

Here we have included the value k of m, as we may  do because the left-
hand side  of (23.8.8)  vanishes when m = k.

We  have supposed k > 1. When k = 1, (23.8.8) is trivial, and we
have only to choose ck to satisfy (23.8.6), as plainly we may.

We now choose an integer N SO that

(23.8.9)

and take n = Ns, P,,, = Wni-c,.

T h e n
[dm-pm-aYm]  = IN(sS,-b,)-cm-a,/

< se (sR,-h,)-cm-am[  + Is8m-b,l
k k

< $~+?JE  = E (m = 1,2  ,...,  k),

by (23.8.4),  (23.8.8),  and (23.8.9). This is (23.8.2). Next

(23.8.10)

by (23.8.5) and (23.8.6); SO that [NI  > w and

In1  = ~N[S  b IN/ > w.
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Finally, n has the sign of N,  and SO, after (23.8.9) and (23.8.10),  the
sign of

ck

8-k  *

This, by (23.8.6),  is the sign of h.
Hence  n and the p satisfy a11 our demands, and the induction from

k- 1 to k is established.

23.9. Bohr’s proof of the theorem. There are also  a number of
‘analytical’ proofs of Kronecker’s theorem, of which perhaps the
simple& is one  due to Bohr. Al1 such  proofs depend on the facts that

e(x)  = e2piX

has the period 1 and is equal to 1 if and only if x is an integer.
We  observe first that

T

lim 1
s

ecit dt = lim
eciT  _ 1
-z

T+m  T T-m  ciT
0

0

if c is real and not zero, and is 1 if c = 0. It follows that, if

(23.9.1)

where no two c,  are equal, then
T

(23.9.2) b, = lim f
s

X(t)e-cvit  dt.
T-m

0

We take the second form of Kronecker’s theorem (Theorem 444
and consider the function

(23.9.3)
where

W) = IWI,

(23.9.4) F ( t )  = l+ $ e(6,t-a,),
m=1

:),

of the real variable t.  Obviously

4(t)  < kfl.
If Kronecker’s theorem is true, we cari  find  a large t for which every

term in the sum is nearly 1 and +(t)  is nearly k+l.  Conversely, if &t)
is nearly kf 1 for some large t,  then (since  no term cari  exceed 1 in
absolute value) every term must be nearly 1 and Kronecker’s theorem
must be true. We shall therefore have proved Kronecker’s theorem if
we cari  prove that
(23.9.5) lim 4(t)  = kfl.

t-m
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The proof  is based on certain forma1 relations between F(t) and the
function

(23.9.6) *(xl, x2>.*.> X/c)  = I+x,+z,+...+%

of the JC  variables x. If we raise  1,4  to thepth power by the multinomial
theorem, we obtain

(23.9.7) *” = ;r %,,n*  ,,,.)  nrx?  XT2  **42-

Here the coefficients a are positive; their individual values are irrelevant,
but their sum is

(23.9.8) 2 a = y%“(  1, l,..., 1) = (k+  l)p.

We also  require an Upper  bound for their number. There are p+l  of
them when k = 1; and

== (l+xl+...+x&p+  ; (l+x,+...+x&Jp-~xk+...+x~,
0

SO that the number is multiplied at most by pfl when we pass from
k-1 to k.  Hence  the number of the a does not exceed (~+l)~.t

We now form the corresponding power

FP = {l+e(B,t-a,)+...+e(i3kt-ork)}P

of F. This is a sum of the form (23.9.1),  obtained by replacing X~  in
(23.9.7) by e(9;t-a,). When we do this, everyproduct xy...xpin  (23.9.7)
will  give rise  to a different  c,, since the equality of two c,  would imply
a linear relation between the 8.j:  It follows that every coefficient
b, has an absolute value equal to the corresponding coefficient a, and
that 1 lb,]  = za = (k+l)p.

Suppose now that, in contradiction to (23.9.5),

(23.9.9) lim d(t)  < k+l.

Then there is a X and a t,  such  that, for t > t,,

IW)I  < X -=c k+l,
T

and 1-i [IF(t),.& < limk
s

AP  02 = AP.
0 0

7 The actual  number is P+k
( 1k ’

r It is hem  only  that we use the linear independence of the 9, and this is naturally
the kernel  of the proof.
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and therefore a < AP  for every a. Hence, since  there are at most
(~+l)~  of the a, we deduce

(k+lJp  = 1 a < (P+~)~A~,

(23.9.10)

But X < k+l,  and SO

where 6 > 0. Thus esp  < (P+I)~,
which is impossible for large p because

e-*P(p+  l)k  + 0

when p + 00.  Hence (23.9.9) involves a contradiction for large p, and
this proves the theorem.

23.10. Uniform distribution. Kronecker’s theorem, important as
it is, does not tell the full truth about the sets of points (na) or (nir,),
b%... with which it is concerned. These sets are not merely dense in
the unit interval, or cube, but ‘uniformly distributed’.

Returning for the moment to one  dimension, we say  that a set of
points P, in (0,l) is uniformly distributed if, roughly, every sub-interval
of (0,l) contains  its proper quota of points. TO put the definition pre-
cisely,  we suppose that 1 is a sub-interval of (0, l), and use 1 both for
the interval  and for its length. If n, is the number of the points Pl,
P*,...,  P, which fa11  in 1, and

(23.10.1) %A
n ’

whatever 1, when n -+  03,  then the set is uniformly distributed. We
cari  also Write  (23.10.1) in either of the forms

(23.10.2) n, N nI, 72,  = nI+o(n).

THEOREM 445. If 8 is irrational  then the points (n8)  are uniformly
distributed in (0,l).

We give a proof  depending upon the simplest properties of continued
fractions. We use the circular  representation of $ 23.2 (iii).
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We choose a positive integer M SO that

3 9 1

(23.10.3) ?=&<*E<t,
and suppose that

(23.10.4) qv  G w < qv+l9
where the q, are the denominators of the convergents to 9. When 77  is
fixed, and n -+  CO,  then v -+  CO and qv -+ CO,  and

(23.105)
3M
p< 8e

Y
for sufficiently large n. We Write  n in the form

(23.10.6) n = qv+5

where T is a positive integer and

(23.10.7) 0 < s < q,.

Then

and  SO

(23.10.8)

We suppose that I is (01,/3), and  define  u and v as the integers such
that

(23.10.9)

v-u Will  be large when n ami  Y are large. The points

; (u+M < w < v-M)
Y

lie in the interval

which we call  I’. If a point P’  lies in I’,  and the distance PP’ is less
than M/q,, then P lies in I.

We now consider the points m9, or

(23.10.10) P”m-,
QY

6, being the vth convergent to 8. The first q, of these points are the
points

0, J-, 2 g&
qy a;’ *-* QY
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in another order. Of these points, v-u-2M+ 1 lie in I’; and therefore,
since  n > rq,, at least

(23.10.11) T(U-u-2M+l)

of the first n points (23.10.10) lie in 1’.

Now I+L~<~,
Y

by (23.10.9),  or v - u  >  q,  I - 2 .

Hence r(v-u-2M+l)  > r(q, 1-2M-1)  > r(q, 1-3M)
= nI--si-3Mr.

But sI < s < q,  < 7]n  < +En,

by (23.10.7),  (23.10.4),  and (23.10.3); and

by (23.10.8) and (23.10.5). It follows that t,he  number of ma, in 1’ for
which m < n is greater than n(l--6).

If m9, is one  of these points, then

lm7%m8,I  < n16-6,j  < -& < -$  = ”
Y v+l " Y

by Theorem 171, (23.10.4),  and (23.10.3). Since  ma, lies in the interval
1’, mi?  lies in the interval 1.  Hence the number of m8  in I for which
m < n is greater than n( I-E)  ; and therefore

lim 3 3 I-E.
nïm  n

But E is arbitrary, and therefore

(23.10.12) lim 2 3 1.
- nn-em

Suppose finally that J is the complement of 1, a single interval in
the circular  representation. Then the same  argument shows that

lim-> J= l-I,
- nn-xc

and therefore that

(23.10.13) G-GI;
n+m  n

and (23.10.12) and (23.10.13) together contain the theorem.
The definition of uniform distribution may  be extended at once to

space  of k dimensions, and Kronecker’s general theorem may  be
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sharpened in the same  way. But the proof  is more difficult,  and the
argument which we have used in this section cannot be generalized.

It is natural to inquire what happens in the exceptional cases when
the 8 are connected by one  or more linear relations. Suppose, to fix our
ideas, that k = 3. If there is one  relation, the points P, are limited to
certain planes, as they were limited to certain lines  in $ 23.4; if there
are two, they are limited to lines. Analogy suggests that the distribu-
tion on these planes or lines  should be dense, and indeed uniform; and
it cari  be proved that this is SO, and that the corresponding theorems
in space  of k dimensions are also true.

NOTES ON CHAPTER XXIII

8 23.1. Kronecker first stated and proved his theorem in the Berliner  Sitzunga-
berichte, 1884 [Werke,  iii (i), 47-1101. Koksma’s book contoins an exhaustive
bibliography of later  work inspired by the theorem. The one-dimensional  theorem
seems to be due to Tchebychef: see Koksma, 76.

8 23.2. For proof (iii) see Hardy and Littlewood, A&  Math. 37 (1914): 155-91,
especially 161-2.

3 23.3. Konig and Szücs, Rendiconti  del circolo matematico di Palermo, 36 (1913),
79-90.

5 23.7. Lettenmeyer, Proc.  London Math. Soc. (2),  21 (1923),  306-14.
$ 23.8. Estermann, Journal London Math. Soc. 8 (1933),  18-20.
3 23.9. H. Bohr, Journal London Math. Soc. 9 (1934),  5-6;  for a variation see

Proc.  London Math. Soc. (2) 21 (1923),  31516.  There is another simple proof
by Bohr and Jessen in Journal London Math. Soc. 7 (1932),  274-5.

Q  23.10. Theorem 445 seems to have been found independently, at about the
same  time, by Bohl, Sierpmski,  and Weyl. See Koksma, 92.

The best proof of the theorem is no doubt that given by Weyl in a very im-
portant paper in Math. Annalen,  77 (1916),  313-52. Weyl proves that a necessary
and sufficient condition for the uniform distribution of the numbers

(f(l))9 ( f ( 2 ) ) ,  ( f ( 3 ) ) ,  ...

in (0,l)  is that I: eW(41  = o(n)
Y=1

for every integral h. This principle  has many important applications, particularly
to the problems mentioned at the end of the chapter.
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GEOMETRY OF NUMBERS

24.1. Introduction and restatement of the fundamental theo-
rem. This chapter is an introduction to the ‘geometry of numbers’,
the subject created by Minkowski on the basis  of his fundamental
Theorem 37 and its generalization in space of n dimensions.

We shall need the n-dimensional generalizations of the notions which
we used in $$3.9-11;  but these, as we said in 5 3.11, are straightforward.
We defIne  a lattice, and equivalence  of lattices, as in 0 3.5, parallelo-
grams being replaced by n-dimensional parallelepipeds; and a convex
region as in the first definition of Q 3.9.t Minkowski’s theorem is then

THEOREM 446. Any convex region in n-dimen&nal  space, symmetrical
about  the origin  and  of volume greater thun  SP,  contains  a point with
integral coordinates,  not a11 zero.

Any of the proofs of Theorem 37 in Ch. III may  be adapted to prove
Theorem 446: we take, for example, Mordell’s. The planes

2, =  2p,/t  (T =  1,2,...,n)

divide space into cubes of volume (2/t)n.  If N(t)  is the number of
corners of these cubes in the region R under consideration,  and V the
volume of R, then (2/t)nN(t)  + v

when t + 00; and N(t)  > tn  if V > 2n  and t is sufficiently large. The
proof  may  then be completed as before.

If 51,  52Y.9  5, are linear forms in xi,  x2  ,...,  x,, say

(24.1.1) tr  = ~,lxl+g,2x2+...+~,,,x, (r = 1,  %..,n),

with real coefficients and determinant

I

l

%,l a1.2  * * * %a
(24.1.2) A= . . . . . . . #Q,

%In,1 an,2  - - - an,n

then the points in &space  corresponding to integral x1, x2,...,  x, form
a lattice A$: we cal1 A the determinant of the lattice. A region R of

t The second definition cari  also  be adapted to 7t  dimensions, the line 1 becoming an
(n- 1)-dimension81 ‘plane’ (whereaa  the line of the first definition remains  a ‘line’). We
shall  use three-dimeneional  language: thus we shall call  the region 1~~1  < 1, Iz21 < l,...,
Iz,J  < 1 the ‘unit cube’.

$ In 8 3.5 we used L for a lattice of lines,  h for the corresponding  point-lattice. It
is more convenient  now to  reserve  Greek  lettera  for configurations in ‘&space’.
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x-space is transformed into a region P of &space, and a convex R into
a convex P.t Also

/I  ..,  1 d.$,d4‘,...d(,  = IA1 \[ . . . 1 dx,dx,...dx,,. *
SO that the volume of P is ]A/  times that of R. We  cari  therefore restate
Theorem 446 in the form

THEOREM 447. If A is a lattice of determinant  A, and P is a co12vex
region symmetrical about  0 and  of volume greater thun  2n  IAl,  then P
contains  a point of A other thun  0.

We  assume throughout the chapter that A # 0.

24.2. Simple applications. The theorems which follow Will  a11
have the same  character. We shall be given a system of forma  &.,
usually linear and homogeneous, but sometimes (as in Theorem 455)
non-homogeneous, and we shall prove that there are integral values of
the x,  (usually not a11 0) for which the &  satisfy certain inequalities.
We  cari  obtain such  theorems at once by applying Theorem 447 to
various simple regions P.

(1) Suppose first that P is the region defined by

IL1  -==l  4, 1521  < &?Y.>  I&&l  < L

This is convex and symmetrical about 0, and its volume is 2n&Xz...X,.
If X, h,  . . . An  > IA/,  P contains  a lattice point other than 0; if
X,X, . . . X, > [Al,  there is a lattice point, other than 0, inside P or on
its boundary.1  We thus obtain

THEOREM 448. If zJ1,  c2,...,  5, are homogeneous  linear forms  in x1,
x2  ,...,  x,,  with reul  coeficients  and determinant A, Xi,  X, ,...,  X, are positive,
and
(24.2.1) &&...L  > IAI,
then there are integers x1,  xz,...,  x~,  not a11 0, for which

(24.2.2) I&l  < 4% I&I  < L...>  l5,l  < L
In particular we cun  muke  /&.l  < v IA  1 for each  r.

t The invariance of convexity  depends  on two properties of linear transformations
viz. (1) that lines  and planes are transformed into lines  and planes, and (2) that the
order  of points on a line is unaltered.

$ We paes  here by an appeal  to continuity  from a result concerning an open  region
to one  concerning the corresponding closed  region. We might, of course, make  a similar
change in the general  theorems 446 and 447: thus any  closed  convex region, symmetrical
about  0, and of volume not less than 2”,  bas  a lattice point, other than 0, inside it or
on its boundary. We shall not again  refer exphcitly to such  trivial appeals  to continuity.
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(2) Secondly, suppose that P is defined by

(24.2.3) lL,l+ E,l+...+ ILLI  -=c A-
If n = 2, P is a square; if n = 3, an octahedron. In the general case
it consists  of 2n  congruent parts, one  in each  ‘octant’. It is obviously
symmetrical about 0, and it is convex because

lPL+P’s’I  G P151+P’15’1
for positive p and p’. The volume in the positive octant 5,.  > 0 is

A” j(j&  yj(, ...l-tL-j*-b-;[n  = AY.
s 0

If hn > n! [Al  then the volume of P exceeds 2n/Aj,  and there is a lattice
point, besides 0, in P. Hence we obtain

THEOREM 449. There are integers x1,  x2,...,  x,,  not a11 0, for which
(24.2.4) I~II+I~21+...+I~,I  < (n!  PI)““.

Since,  by the theorem of the arithmetic and geometric means,

nl4X.&P  < 1411+1521+...+15nl~
we have also

THEOREM 460. There are integers x1,  x2,...,  x,,  not a11 0, for which

(24.2.5) 15,5,  . ..&A  < en! Pl.
(3) As a third application, we define  P by

5;+.$+...+5:  < x2:
this region is convex because

(PL+P’E’)2  < (P+P’)(P52+P’c2)
for positive p and CL’. The volume of P is XnJ,,  wheret

THEOREM 451. There are integers x1,  x2,...,  x,,  not a11 0, for which

(24.2.6)

Theorem 451 may  be expressed in a different way. A quadratic  form
Q in x1,  x2,..., 5, is a function

Q@,,  x2>...> X?L) = 5 5 ar,sx,xsr=1s=1
t See, for exemple, Whittaker and  Watson, Modem.  analy&,  ed. 3 (1920). 268.

For n = 2 and n = 3 we get the values ?rA* and +As for the volumes of a oircle or
a sphere.
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with u,,~  = ar,s. The determinant D of Q is the determinant of its
coefficients. If Q > 0 for a11 xi,  x2,...,  x~,  not all 0, then Q is said to
be positive dejînite.  It is familiart that Q cari  then be expressed in t’he
form Q = 512+52+...+t:,

where  L1, L...,  5,, are linear forms with real coefficients and determinant
dD.  Hence  Theorem 451 may  be restated as

THEOREM 452. If Q is a positive de$nite  quadratic form in x1,  x2,.  . . , x,,
with determinant D, then there are integral values of x1,  x2,...,  x,,  not a11
0, for which
(24.2.7) Q < 4D11nJ;=ln.

24.3. Arithmetical proof of Theorem 448. There are various
proofs of Theorem 448 which do not depend on Theorem 446, and the
great importance of the theorem makes it desirable to give one  here.
We confine ourselves for simplicity to the case n = 2. Thus we are
given linear forms

(24.3.1) 5 = =eIBY> ?1  = yx+ay,
with real coefficients and determinant A = &--py # 0, and positive
numbers X, p for which Xv  > 1 A 1;  and we have to prove that

(24.3.2) If1 < 4 lrll G P>
for some integral x and y not both 0. We may  plainly suppose A > 0.

We prove the theorem in three stages: (1) when the coefficients are
integral and each  of the pairs 01,  j3  and y, 6 is coprime; (2) when the
coefficients are rational; and (3) in the general case.

(1) We suppose first that 01,  /3,  y, and 6 are integers and that

<%P>  = (y,F)  = 1.
Since  (a,/?)  == 1, there are integers p and q for which aq--/3p  = 1. The
linear transformation

ax+rsy = x, px+qy = y

establishes a (1,1) correlation between integral pairs x, y and X, Y; and

f = x, 7 = rX+AY,

where r = yq-dp  is an integer. It is sufficient to prove that /t[ < h
and 171  < p for some integral X and Y not both 0.

IfX<lthen~>A,andX=O,Y=lgives~=O,  /T]=A<~.

t See, for example,  Bôcher, Introduction to higher algebra,  ch. 10, OP Ferrar,  Algebra,
ch. 11.
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IfX > 1, we  take

n = [A], t= 2, h = Y, k = x,-f

in Theorem 36. Then o<x<p]<x

and IrX+AYI  = AX

SO  that X = k and Y = h satisfy our requirements.

(2) We suppose next that OL,  /3,  y, and 6 are any  rational numbers.
Then we cari  choose p and u SO that

[’ =  p( =  a’x+/Yy, 7j’  =  07)  =  y’x+s’y>

where CX’,  /3’,  y’, and 6’ are integers, (a’,fl’) = 1, (y’, 6’)  = 1, and
A’ = (Y?‘--13’~’  = paA. Also ph. 0~1  > A’, and thereforb, after (l), there
are integers x, y, not both 0, for which

ICI  < PA, 111’1  G  w.

These inequalities are equivalent to (24.3.2),  SO that the theorem is
proved in case (2).

(3) Finally, we suppose 01,  fi, y, and 6 unrestricted.  If we put
a = (Y’~A  >...>  E = e4A ,..., then A’ = &‘--/?‘y’  = 1. If the theorem has
been proved when A = 1, and X’p’ > 1, then there are integral x, y,
not both 0, for which

le1 < x’, WI  < Pr;

and these inequalities are equivalent to (24.3.2),  with X = h’dA,
p = p’llh, Xp  > A. We may  therefore suppose without loss of generality
that A = l.$

We cari  choose a sequence  of rational sets OL,,  fi,,,  ‘yn,  6, such that

‘Y,%&-PnYn  = 1

and O~,+CIL,  &-f/?,..., when n + CCL  It follows from (2) that there are
integers X~ and y%,  not both 0, for which

(24.3.3) l%xn+t%YnI  G 4 IYTbxn+hYnI  G P-
Also

I%l = Is,(,,xn+B,Yn)-Bn(‘Ynxn+snYn)l  G w?J+PlPA
SO that x, is bounded; and similarly yn is bounded. It follows, since

t The [ here  is neturally  not the 6 of this section.
$ A similer  eppeal  to homogeneity wotild  enable  us ta  reduce  the proof  of any  of

the theorems of this chapter  to its proof  in the cme  in which A haa any  aseigned  value.
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x*  and yfi  are integral, that some pair of integers x, y must occur
infinitely often among the pairs x,, z/n.  Taking xn  = x, y,, = y in
(24.3.3),  ad  making n + 03,  through the ap,propriate  values, we obtain
(24.3.2).

It is important to observe that this method of proof,  by reduction  to the case
of rational or integral coefficients, cannot  be used for such  a theorem as Theorem
450. This (when n = 2) asserts that I&l < alA1  for appropriate CC,  y. If we try
to use the argument of (3) above, it fails  because z,, and yn are not necessarily
bounded. The failure  is natural, since the theorem is trivial when the coefficients
are rational: we cari  obviously choose  z and y SO that 5 = 0, I&l = 0 < &lAl.

24.4. Best possible inequalities. It is easy to see that Theorem
448 is the best possible theorem of its kind, in the sense that it becomes
false if (24.2.1) is replaced by
(24.4.1) A,A,...A,  >/C/A~
with any  k < 1. Thus if&,  = z? for each  r,  SO that A = 1, ad  X, = nJk,
then (24.4.1) is satisfiecl; but I&l < X, < 1 implies xr  = 0, ad there is
no solution of (24.2.2) except  x1  = x2  = . . . = 0.

It is natural to ask whether Theorems 449-51 are similarly ‘best
possible’. Except  in one special  case, the answer is negative; the
numericd  constants on the right of (24.2.4),  (24.2.5),  and (24.2.6) cari
be replacecl by smaller numbers.

The special  case referred  to is the case n = 2 of Theorem 449. This
asserts that we cari  make
(24.4.2) 14l+hl  < &Yl)~
ad  it is easy to see that this is the best possible result. If 4 = ~+y,
71  = x-y, then A = -2, ad  (24.4.2) is /[/+/ql  < 2. But

14l+ld  = mW5+ql,  15-d)  = maxW4,  I%l),
ad  this cannot be less than 2 unless x = y = 0.t

Theorem 450 is not a best possible theorem aven  when n = 2. It
then asserts that
(24.4.3) 15~1  G ilAI,
ad  we shall show in 5 24.6 that the 4 here may  be replaced by the
smaller constant 5-i. We  shall also make a corresponding  improvement
in Theorem 451. This asserts (when n = 2) that

E2+q2  < 4dAl,
and we shall show that 4~1  = 1.27...  may  be replaced by ($ = 1.15...  .

t Actually  the case  n = 2 of Theorem 449 is equivabnt  to the correaponding  cm
of Theorem 448.
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We shall  also show that 5-t and (a)*  are the best possible constants.
When n > 2, the determination of the best possible constants is difficult.

24.5. The best possible inequality for t2+v2.  If

Q(x, y) = a22+2bzy+cy2
is a quadratic form in x and y (with real, but not necessarily integral,
coefficients);

x = r)x’+qy’, y  =  rx’+sy’ (PS-qr  = *1)

is a unimodular substitution in the sense of 5 3.6; and

Q(x, y) = a’xQ+Zb’x’y’+c’y’2 = &I(x’,  y’),

then we say  that Q is equivalent to Q’, and Write  Q N Q’. It is easily
verified that a’~‘-b’~ = ac-b2, SO that equivalent forms have the same
determinant. It is plain that the assertions that I&I  < k for appro-
priate integral x, y, and that [Q’I  < k for appropriate integral x’, y’,
are equivalent to one another.

Now let x,,, y,, be coprime  integers such that M = Q(xO, y,,) # 0.
We cari choose xi, y1 SO that x0 yi-x1 y,, = 1. The transformation

(24.5.1) x = xox’+xl  y’, Y = Yox’+YlY’
is unimodular and transforms Q(x, y) into &I(x’,  y’) with

a’ = ax;+2bx,y,+cy~  = Q(x,, y,,) = M.
If we make the further unimodular transformation

(24.5.2) 2’  = xn+nyv, y ’  = yfl,

where n is an integer, a’ = M is unchanged and b’  becomes

b”  =  b’+na’  =  b’+nM.
Xince M # 0, we cari choose n SO that - IMI  < 2b”  < /M 1. Thus we
transform Q(x, y) by unimodular substitutions into

Q”(x”,  y”) = MXC2+2b”xny”+CRy”2

with -IM[  < 2b”  < 1MI.i
We cari now improve the results of Theorems 450 and 451, for n = 2.

We take the latter theorem first.

THEOREM 453. There are integers x, y, not both 0, for which
(24.5.3) t2+v2  < WlAI;
and this is true with  inequality unless
(24.5.4) t2+v2  - (%)*P~(x~+xY+Y~).

t A reader familiar  with the elements  of the theory of quadratic forms Will rocognize
Geuas’s method for transforming Q into a ‘reduced’ form.
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We  have

(24.5.5)

where

G E O M E T R Y O F N U M B E R S

t2+q2  = ax2+2bxy+cy2  = Q(x,  y),

(24.5.6) a = c?+y2, b = d+rs, c = /92+s2,
ac-b2 = (~~&--/3y)~  = A2  > 0.

401

Then Q > 0 except  when x = y = 0, and there are at most a finite
number of integral  pairs x, y for which Q is less  than any  given k. It
follows that, among such  integral pairs, not both 0, there is one, say
(x,,,  y,,), for which Q assumes a positive minimum value m. Clearly x0
and y,, are coprime  and SO, by what we have just said, Q is equivalent
to a form Q”,  with a” = m and -m < 2b” < m. Thus (dropping the
dashes) we may  suppose that the form is

mx2+2bxy+cy2,

where -m < 2b < m. Then c > m, since otherwise x = 0, y = 1
would give a value less than m; and

(24.5.7) A2  = mc-b2  > m2-arn2 = $m2,

SO that m < (%)*IAI.
This proves (24.5.3). There cari  be equality throughout (24.5.7) only

if c = m and b = Jm,  in which case Q N m(x2+xy+y2).  For this form
the minimum is plainly (i)*  ]AI.

24.6. The best possible inequality for I~V[.  Passing to the  pro-
duct 1tq  1, we  prove

THEOREM 454. There are integers x, y not both 0 for which

(24.6.1) 15~1  < 5-*lAI;
and this is twe with inequulity  unkss

(24.6.2) (77  - 5-)P l(x2+xy-Y~).
The proof  is a little less straightforward than that of Theorem 453

because we are concerned with an ‘indefinite form’. We Write

(24.6.3)

where
ci%  = ax2+2bxy+cy2  = Q(x,  y),

(24.6.4)
I

a = ay, 2b = ci8+by, c = p,
4(b2-ac)  = A2  > 0.

We write m for the lower bound of I&(x,  y)l, for x and y not both zero;
we may  plainly suppose that m > 0 since there is nothing to prove if
m = 0. There may  now be no pair x, y such  that I&(x,  y) 1 = m, but

5331 nd
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there must be pairs for which 1 Q(x,  y) [ is as near to m as we please.
Hence we cari  find a coprime  pair x0  and y0  SO that m < /ïlfI  < 2m,
where M = Q(x,,  ya).  Without loss of generality we may  take M > 0.
If we transform as in 5 24.5, and drop the dashes, our new quadratic
form is Q(x,  y) sz  Mx2+2b~y+cy2,
where

(24.6.5) m < M < 2m, -M<2b<M
and

(24.6.6) 4(b2-Mc)  = A2  > 0.

By the definition of m, I&(x,  y) 1 > m for a11 integral pairs x, y other
than 0, 0. Hence if, for a particular pair, Q(x,  y) < m, it follows that
&(~,y)  < -m. Now, by (24.6.5) and (24.6.6),

Q(0,  1) = c < g < &M  < m.

Hence c < -m and we write C = -c > m > 0. Again

Q ( l ,  2)  = M-]2bI-C < M - C  < M - m  <  m

and SO M-12bl-C  < -m,  that is

(24.6.7) 12bI  > M + m - C .
If M+m-C < 0, we have C > M+m > 2m and

A2  = 4(b2+MC)  > 4MC > 8m2  > 5m2.

If M+m-C > 0, we have from (24.6.7)

A2  = 4b2+4MC  > (M+m-C)2+4MC
= (M-m+C)2+4Mm  > 5m2.

Equality cari  occur only if M-m+C = m and M = m, SO that
M = C = m and lb]  = m. This corresponds to one  or other of the
two (equivalent) forms m(xz+xy-y2)  and “(x2-xy-y2). For these,
IQ(l,O)l = m = 54A. F or a11 other forms, 5m2  < A2  and SO we may
choose x0,  y,, SO that 5m2  < 5M2  < A2.
This is Theorem 454.

24.7. A theorem concerning non-homogeneous forms. We
prove next an important theorem of Minkowski concerning non-homo-
geneous forms

(24.7.1) 5 - P  =  a+BY-PS 7-u  = yx+sy-o.
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THEOREM 455. If e and 7 are homogeneous linear forms in x, y, with
determinant 3 # 0, and p and CT are real,  then there are integral x, y for
which

(24.7.2) I(&P)(‘I-u)I < Wi
and this is true with inequality unless

(24.7.3) 5 = eu,  71  = +v,  ‘+  = A, p = e(f+i),  u = d(s++>,

where  u and v are forms with  integral coeficients  (and determinant l),

and f and g are integers.

It Will  be observed that this theorem differs from a11  which precede
in that we do not exclude the values x = y = 0. It would be false if
we did not allow this possibility, for example if 5 and 71  are the special
forms of Theorem 454 and p = u = 0.

It Will  be convenient to restate  the theorem in a different form. The
points in the plane 5,  7 corresponding to integral x, y form a lattice
A of determinant A. Two points P, Q are equivalent with respect to A
if the vector PQ is equal to the vector from the origin to a point of A;t
and (t-p, q-u), with integral x, y, is equivalent to (-p, --CT).  Hence
the theorem may  be restated as

THEOREM 456. If A is a Zattice of determinant A in the plane of (5, q),
and Q is any  given point of the plane, then there is a point equivalent to
Q for which

(24.7.4) 15771 d 4iW,
with inequalify except  in the special case (24.7.3).

In what follows we shall be concerned with three sets of variables,
(x, y), (5, T),  and (t’, 7’). We cal1 the planes of the last two sets of
variables v and r’.

We may  suppose A = 1.1  By Theorem 450 (and a fortiori by Theorem
454), there is a point P,  of A, other than the origin, and corresponding
to x0,  y0,  for which

(24.7.5) I&l%ll  G 4.
We may  suppose x0  and y,, coprime  (SO that P,  is ‘visible’ in the sense
of 5 3.6). Since  5, and 7s satisfy (24.7.5),  and are not both 0, there is
a real posit.ive  h for which

(24.7.6) Gw2+ w1%J2 = 1.

t See p. 3:. It is the same  thing to say that the corresponding points in the (z, y)
plaie  are equivalent with respect to the fundemental  lattice.

$ üee the footnote  to p. 396.
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We put
(24.7.7) 5’ = Xi$, 7)’ = h-h).

Then the lattice A in 7~  corresponds to a lattice A’ in v’, also of deter-
minant 1. If 0’ and PO correspond to 0 and P,, then PO,  like P,, is
visible; and O'PO  = 1, by (24.7.6). Thus the points of Af on O'PO are
spaced out at unit distances, and, since  the area  of the basic parallelo-
gram of A’ is 1, the other points of A’ lie on lines  parallel to O'PO
which are at unit distances from one  another.

We denote by S’ the square whose centre is 0’ and one  of whose
sides  bisects O'PO  perpendicular1y.t  Each side  of S’ is 1; S’ lies in
the circle p+p  = 2(4)2  = 2,
and

(24.7.8) l~‘~‘l  G 6(P+P)  < 4
at a11 points of S’.

If A' and B' are two points inside S’, then each  component of the
vector  A'B' (measured parallel to the sides  of the square) is less t’han
1, SO that A' and B'  cannot be equivalent with respect to A’. It follows
from Theorem 42 that there is a point of S’ equivalent to Q’ (the point
of r’  corresponding to Q). The corresponding point of r is equivalent
to Q, and satisfies

(24.7.9) 15771  = k-q’1  d a.
This proves the main clause of Theorem 456 (or 455).

If there is equality in (24.7.9),  there must be equality in (24.7.8), SO

that 15’1  = 17’1  = 3. This is only possible if S.’ has its sides  parallel
to the coordinate axes and the point of S’ in question is at a corner.
In this case PO must be one  of the four points (f 1, 0), (0, i 1): let us
suppose, for example, that it is (l,O).

The lattice A’ cari  be based on O'PO  and O'P;,  where Pi is on 7’ = 1.
We may  suppose, selecting Pi appropriately, that it is (c, l), where
0 < c < 1. If the point of S’ equivalent to Q’ is, say,  (4, i), then
(&c,  4- l), i.e. (a-c,  -$), is another point equivalent to Q’; and this
cari  only be at a corner of S’, as it must be, if c = 0. Hence  Pi is
(0, l), A’ is the fundamental lattice in 7~‘,  and Q’, being equivalent to
(4, &),  has coordinates

t?  = f-t;, rl’ = s+6,
where f and g are integers. We are thus led to the exceptional case
(24.7.3),  and it is plain that in this case the sign of equality is necessary.

t The reader  should draw  a figure.
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24.8. Arithmetical proof of Theorem 455. We also give an arith-
metical proof  of the main clause of Theorem 455. We transform it as
in Theorem 456, ad we have to show that, given p and  v, we cari
satisfy (24.7.4) with an x ad a y congruent to p and Y to modulus  1.

We again  suppose A = 1. As in 5 24.7, there are integers x,,,  yO,  which
we may  suppose coprime, for which

I(~o+PYoHYxo+~Yo)I  G &
We choose x1 and  y1  SO that x0  yl-x1  y,, = 1. The transformation

x = x,x’+xly’, Y = YOX’fYlY’
changes f ad 17  into forms <’ = o~‘x’+/Yy’,  7’ = y’x’+S’y’  for which

l&‘l  = Ib%+PYo)(Y”o+~Yo)I  < 8.

Hence, reverting to our original notation, we may  suppose without loss
of generality that

(24.8.1) l4 G !k
It follows from (24.8.1) that there is a real h for which

/vLx+x-2y2  = 1;
ad

~l(~~+i3y)(yx+wI  < ~2(~+~Y)2+~-2(Y~+~Y~2

=  X2+2bxy+cy2  =  (x+by)2+py2,

for some b, c, p. The determinant of this quadratic form is, on the one
hard, the square of that of h(orx+/3y)  ad X-l(yx+Gy),t  that is to say  1,
and on the other the square of that of x+by  and $y,  that is to say  p;
and  therefore p = 1. Thus

~I(~+/~YNP+~Y)I  G (x+by)2+y2.
We cari  choose y E v (mod 1) SO that [y\  < 4, and then x G p (mod 1)

SO that Ixfbyl  < 4; and then

b-Il  G *w”+(~)“l  = a-

We leave it to the reader to discriminate the cases of equality in this
alternative proof.

24.9. Tchebotaref’s theorem. It has been conjectured that Theo-
rem 455 coula be extended to n dimensions, with 2-n in place of a;
but this has been proved  only for n = 3 and n = 4. There is, however,
a theorem of Tchebotaref which goes  some way in this direction.

t See (24.5.5) and (24.5.6).
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THEOREM 457. If tl, t2 ,...,  5, are homogeneous linear form.8 in x1,
x2>...> x~,  with real coeficients  and determinant A; pl, p2,..., pn are real;
and m is the lower  bound of

1(51-P1)(4,-Pz)...(5,-P,)l,
then
(24.9.1) m < 2-anlAI.

We may  suppose A = 1 and m > 0. Then, given any  positive E,
there are integers XT,  x2,...,  xz  for which

(24.9.2)

Il IGPil =  l(l:-P1)(52-Pz)...(~~-Pn)I  =  jgjj9 O<O<E.

We put gt.  = si-g:z G (i = 1,  %..,n).

Then &...,  .$k are linear forms in xi-x:,...,  x,--x:,  with a determinant
D whose absolute value is

IDI  = (n j.$;-pil)-1  = k$;

and the points in f’-space  corresponding to integral x form a lattice
A’ whose determinant is of absolute value (1 -O)/m.  Since

Il l&--pi1 2 m,
every point of A’ satisfies

The same  inequality is satisfied by the point symmetrical about the
origin, SO that JJ ] fi-- 1) > l-0 and

(24.9.3) n /p-11  = ~(C$;“-1)(~;“-1)...(~;2-1)~  > (l-ey.

We now prove that when E ami  0 are small,  there is no point of A’,
other than the origin,  in the cube C’ dejîned  by
(24.9.4) IGI < .J{1+(1-W>.
If there is such  a point, it satisfies

(24.9.5) - 1  < .$;“-l < (l-Q2  < 1 (;  = 1,2 ,...,  n).

I f

(24.9.6) g;“-1  > -(l--Q2

for some i, then I(i”-  11  < (l-0)z  for that i, and 1gi2- 11  < 1 for every
i, SO that I-I I&“-1  I < (1--e2,
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in contradiction to (24.9.3). Hence  (24.9.6) is impossible, and therefore

-1 < .$2-l  < -(l-e)2 (i = 1,2,...,n);
and hence

(24.9.7) I[;l  < J{l-(l-0)“)  < J(20) (i = 1, 2 ,...>  n).

Thus every point of A’ in C’ is very near to the origm  when E and 8 are
small.

But this leads at once to a contradiction. For if (Si,...,  en)  is a point
of A’, then SO is (N(i,..., Ntk)  for every integral N. If 8 is small,  every
coordinate of a lattice point in c’ satisfies (24.9.7),  and at least one  of
them is not 0, then plainly we cari  choose N SO that (N5;,...,  Ncn),
while still in C’,  is at a distance at least 4 from the origin, and there-
fore cannot satisfy (24.9.7). The contradiction shows that, as we stated,
there is no point of A’, except the origin, in C’.

It is now easy to complete the proof  of Theorem 457. Sir-me  there
is no point of A’, except the origin, in C’,  it follows from Theorem 447
that the volume of C’ does not exceed

2np/  = 27yl-Q/?n;
and therefore that

2”m{l$(l-e)2}*n < 2m(l-6).

Dividing by 2-, and making 0 -+  0, we obtain

m < 2-tn,
the result of the theorem.

24.10. A converse of Minkowski’s Theorem 446. There is a
partial converse of Theorem 446, which we shall prove for the case
n = 2. The result is not confined to convex  regions and we therefore
first redefine  the area  of a bounded region P, since  the definition of
p. 32 may  no longer be applicable.

For every p > 0, we denote by A(p) the lattice of points (px,py),

where x, y take a11 integral values, and Write  g(p) for the number of
points of A(p) (apart  from the origin 0) which belong to the bounded
region P. We call

(24.10.1) v = ;yP%(P)

the  area  of P, if .the  limit exists. This definition embodies the only
property of area  which we require in what follows. It is clearly
equivalent to any  natural definition of area  for elementary regions such
as polygons, ellipses, etc.
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We prove first

THEOREM 458. If P is a bounded plane region with an area  V which
is less than 1, there is a Eattice of determinant 1 whiçh has no point (except
perhaps 0) belonging to P.

Since P is bounded, there is a number N such  that

(24.10.2) -N<t<N, -NGq<N

for every point ([, 7) of P. Let p be any  prime such that

(24.10.3) p > N2.

Let u be any  integer and A, the lattice of points (6, v), where

5=$, 7)=
ux+py

4P
and X, Y take a11 integral values. The determinant of A, is 1. If
Theorem 458 is false, there is a point TU  belonging to both A, and P
and not coinciding with 0. Let the coordinates of Tu  be

If X, = 0, we have
4PIYUI  = I%l  < N < 4P

by (24.10.2) and (24.10.3). It follows that Y,, = 0 and T,,  is 0, contrary
to our hypothesis. Hence X, # 0 and

0 < I&I  = Jpl4,l < Ndp  -C P.
Thus

(24.10.4) X,,  $0  (modp).
If T,,  and TU  coincide, we have

x, = x,, ux,+py,  = vx,+py,
and SO

X,(u-v)  f 0, u = II (modp)

by (24.10.4). Hence the y points

(24.10.5) T,,  T,, T,,...,  ?,-1

are a11  different. Since they a11 belong to P and to A@“),  it,  follows
that

SCP-‘)  3 P*
But this is false for large enough p, since

p-‘g(p-1)  -f v < 1

by (24.10.1). Hence Theorem 458 is true.



24.10 (459)] GEOMETRY OF NUMBERS 40!)

For our next result we require the idea of visible points of a lattice
introduced in Ch. III. A point T of R(p) is visible (i.e. visible from the
origin) if T is not 0 and if there is no point of A(p) on OT between 0
and T. We  write f(p) for the number of visible points of R(p) belonging
to P and prove the following lemma.

THEOREM 459: V
PWP)  +5(2)  as P -+ 0.

The number of points of A(p) other than 0, whose coordinates satisfy
(24.10.2) is

P[N/p]+1)2-1.
Hence

(24.10.6)

and

f(P) = g(P)  = 0 (P > w

(24.10.7)

for all p.
Clearly (px,py) is a visible point of A(p) if, and only if, x,  y are

coprime. More generally, if m is the highest common factor  of x and y,
the point (px,py) is a visible point of A(mp) but not of A(i+)  for any
integral k # m. Hence

g(P)  =mgmv).

By Theorem 270, it follows that

f(P)  =w~lP(mb(mp).
The convergence condition of that theorem is satisfied trivially since,
by (24.10.6),f(mp)  = g(mp)  = 0 for mp  > N. Again,  by Theorem 287,

and SO

1 * t4m)-= ~
84 c m2

m=l

(24.103)

Now let E > 0. By (24.10.1),  there is a number p1 = pl(c)  such  that

Im2f2dmf)-VI  < E

whenever mp < pl. Again,  by (24.10.7),

]m2p2g(mp)-VI  < 9N2+V
Ee
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for a11  m. If we Write  M = [pl/p], we  have, by (24.10.8),

/q(p)-&i < E 2 --$+w2+v  2 ;
Wl=l rn==Alfl

2 9iv2+v
-CT+  M+1 < 3%

if p is small enough to make

M = [Plh] > (9N2fWE.
Since E is arbitrary, Theorem 459 follows at once.

We cari  now show that the condition V < 1 of Theorem 458 cari  be
relaxed if we confine our result to regions of a certain special  form.
We say  that the bounded region P is a star region provided that (i) 0
belongs to P, (ii) P has an area  V defined by (24.10.1),  and (iii) if T is
any  point of P, then SO  is every point of OT between 0 and T. Every
convex region containing 0 is a star region; but there are star regions
which are not convex. We cari  now prove

THEOREM 460. If P is a star region, symmetrical about  0 and of area
V < 25(2)  = &r2  there is a lattice of determinant 1 which has no poi?at
(except  possibly 0) in P.

We use the same  notation and argument as in the proof  of Theorem
458. If Theorem 460 is false,  there is a Tu,  different from 0, belonging
to A, and to P.

If Tu  is not a visible point of A(p-h),  we have m > 1, where m is the
highest common factor  of X, and uX,+pY,.  By (24.10.4), p ,/’  X, and
SO p / m. Hence m 1 Y,. If we Write  X, = mXU,  Y, = mYu, the num-
bers XU and uXU+pYU are coprime. Thus the point Tu,  whose coordi-
nates  are

x; uxu+pyu
&’ 4P ’

belongs to A, and is a visible point of R(p-h). But Th lies on OT, and
SO belongs to the star region P. Hence, if Tu  is not visible, we may
replace it by a visible point.

Now P contains  the p points

(24.10.9) T,,  Tu...,  TP-l,
a11 visible points of A(p-*),  a11 different (as before) and none  coinciding
with 0. Since P is symmetrical about 0, P also  contains  the p points

(24.10.10) TO,  Tl,...,  5yl>
where F, is the point (-CU, -qJ. All these p points are visible points
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of A(p-*),  a11 are different ad none  is 0. Now T,, ad Ifi.cannot coin-
cide (for then each  would be 0). Again,  if u # v and  Tu  and !ï!!  coincide,
we have x, = -x,, uX,+pY,  = -vx,-pY,,

(u-V)X, E 0, X, s 0  0r u  E v  (modp),

both impossible. Hence  the 2p points listed in (24.10.9) ad (24.10.10)
are all different, all visible points of A(p-*)  and  a11 belong to P SO that

(24.10.11) f(P-f)  a 2Pa
But, by Theorem 459, as p -+  CO,

p-lf(p-i) + 6V/n2 < 2
by hypothesis, ad SO (24.10.11) is false for large enough p. Theorem
460 follows.

The above proofs of Theorems 458 and 460 extend at once to n
dimensions. In Theorem 460, ((2) is replaced by c(n).

NOTES ON CHAPTER  XXIV
$ 24.1. Minkowski’s writings on the geometry of numbers are contained  in his

books Geomekie  der Zahlen and Diophantische Approximationen, already referred
to in the note on $3.10, and in a number of papers reprinted in his Gesammelte
Abhandlungen (Leipzig, 1911). The fundamental theorem was first stated and
proved in a paper of 1891 (Gesammelte  Abhandlungen, i. 255). There is a very
full account  of the history and bibliography of the subject, up to 1936, in Koksma,
chs. 2 and 3, and a survey of recent  progress by Davenport in Proc.  International
Congres8  Math. (Cambridge, Mass., 1950),  1 (1952),  166-74.

Siegel [Acta  Math. 65 (1935),  30’7-231  has shown that if V is the volume of
a convex  and symmetrical region R containing no lattice point but 0, then

2n  = v+  v-1  2 II12,

.

where each  I is a multiple intogral over R. This formula makes Minkowski’s
theorem evident .

Minkowski (Geometrie der Zahlen,  211-19) proved a further theorem which
includes  and goes  beyond thc fundamental theorem. We suppose R convex and
symmetrical, and Write  hR  for R magnified linearly about 0 by a factor h. Wo
define  A,,  X2,...,  A, as follows: A, is the least X for which hR  has a lattice point
PI on its boundary; A, the least for which AR has a lattice point Pz,  not collinear
with 0 and PI, on its boundary; A, the least for which hR  has a lattice point P3,
not coplanar with 0, PI, and Pz,  on its boundary; and SO on. Then

0 < A, < A, < . . . < A,

(A,, for example, being equal to A, if A, R has a second lattice point, not collinear
with 0 and PI, on its boundary); and

h,h,...h,V  < 2”.
The fundamental theorem is equivalent to A:L’ < 2”.  Davenport [Qwrterly
Journal of Math. (Oxford), 10 (1939),  117-211  has given a short proof of the
more general theorem.
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3 24.2. Al1  these applications of the fundamental theorem were made by
Minkowski.

Siegel, Math. Anna&,  87 (1922), 36-8, gave an analytic proof  of Theorem 448:
see also Mordell, ibid. 103 (1930), 38-47.

Hajos,  Math. Zeitschri&  47 (1941), 427-67, has proved an interesting con-
jecture of Minkowski concerning the ‘boundary case’ of Theorem 448. Suppose
that A = 1, SO that there are integral zi,  x2,...,  2, such that 1&]  Q 1 for r = 1,
2 ,..*, n. Can the 2, be chosen  SO that le,1  < 1 for every r ? Minkowski’s con-
jecture, now established by Hajos,  was that this is true except  when the &.  cari
be reduced, by a change of order and a unimodular substitution, to the forms

51 = 219 5, = or,,,~,+x,,  .a.> 6, = a,~,xl+~,~*xa+...+x,.

The conjecture had been proved before only for n < 7.
The first general results concerning the minima of definite quadratic forms

were found by Hermite in 1847 (Bu~res,  i, 100 et seq.): these are not quite SO
Sharp  as Minkowski’s.

8 24.3. The first proof  of this character was found by Hurwitz, Gottinger  Nu&-
richten  (1897), 139-45, and is reproduced in Landau, Algebraische  Zahkn,  34-40.
The proof  was afterwards simplified by Weber and Wellstein, Math. AnnaZen,
73 (1912), 275-85, Mordell, Journal London Math. Soc. 8 (1933),  179-82, and
Rado, ibid. 9 (1934), 164-5 and 10 (1933),  115. The proof  given here is substan-
tially Rado’s (reduced to two dimensions).

$ 24.5. Theorem 453 is in Gauss, D.A., 3 171. The corresponding results for
forms in n variables are known only for n < 8: see Koksma, 24, and Mordell,
Journal London Math. Soc. 19 (1944), 3-6.

$ 24.6. Theorem 454 was first proved by Korkine and Zolotareff, Math. AnnaZen
6 (1873), 366-89 (369). Our proof  is due to Professor Davenport. See Macbeath,
Journal London Math. Soc. 22 (1947),  261-2, for another simple proof.  There is
a close connexion between Theorems 193 and 454.

Theorem 454 is the first of a series  of theorems, due mainly to Markoff,  of
which there is a systematic account in Dickson, Studies,  ch. 7. If & is not
equivalent either to (24.6.2) or to

(a) 8-+lA((x*+2xy-y2),

t h e n IEt < f3-*lAl
for appropriate 2, y; if it is not equivalent either to (24.6.2),  to (a), or to

(b) (221)-~~A~(5~2+11xy-5ya),

t h e n I&l  < 5(=1)-*jAl;

and SO on. The numbers on the right of these inequalities are

(cl m( 9?n*-  4)-+,

where rn is one  of the ‘Markoff  numbers’ 1, 2, 5, 13, 29,...; and the numbers (c)
have the limit  +.  See Cassels,  Ann&  of Math. 50 (1949), 676-85 for a proof  of
these theorems.

There is a similar set of theorems associated with rational approximations to
an irrational 6, of which the simplest is Theorem 193: see §§ 11.8-10, and  Koksma,
31-33.

Davenport [PT -O C . London Math. Soc. (2) 44 (1938), 412-31, and Journal
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London Math. Soc. 16 (1941),  9%1011 has solved the corresponding problem for
n = 3. We cari make

where the product extends over  the roots 8 of 83+02-2~-  1 = 0. Morde& in
Journal London Math. Soc. 17 (1942),  107-15, and a series  of subsequent papers
in the Journal and Proceedings,  has obtained the best possible inequality for the
minimum of a general binary cubic form with given determinant, and has shown
how Davenport’s result cari  be deduced from it; and this has been the starting-
point for a considerable  body of work, by Mordell, Mahler, and Davenport, on
lattice points in non-convex regions.

The corresponding problem for n > 3 has not yet  been solved.
Minkowski [G&Yinger Nachrichten  (1904),  311-35; Cwammelte  Abhandlungen, ii.

3-421  found the best possible result for If11  + IEzl  + I&l,  viz.

IE,1+15,1+1&1  G W’Wl)*.
No simple proof of this result is known, nor any corresponding result with n > 3.

$5  24.7-8. Minkowski proved Theorem 455 in Math. Annalen,  54 (1904),  108-14
(Cfesammelte  Abhandlungen, i. 320-56,  and Diophantische Approximationen, 42-7).
The proof in 3 24.7 is due to Heilbronn and that in § 24.8 to Landau, Journal ftïr
Math. 165 (1931),  1-3: the two proofs, though very different in form, are based
on the same  idea. Davenport [Acta  Math. 80 (1948),  65-951 solved the corre-
sponding problem for indefinite ternary quadratic forms.

5 24.9. The conjecture mentioned at the beginning of this section is usually
attributed to Minkowski, but Dyson [Ann&  of Math. 49 (1948),  82-1091 remarks
that he cari find no reference  to it in Minkowski’s published work. Remak [Math.
Zeitschrift,  17 (1923),  l-34 and 18 (1923),  173-2001  proved the truth of the con-
jecture for n = 3 and Dyson [~OC.  cit.] its truth for n = 4. Davenport [Journal
London Math. Soc. 14 (1939),  47-511 gave a much  shorter proof for n = 3.

It is easy to prove the truth of the conjecture when the coefficients of the
forms are rational .

Tchebotaref’s theorem appeared in Bulletin Univ. Kasan (2) 94 (1934),  Heft 7,
3-16; the proof is reproduced in Zentrulbkztt  füT  Math. 18 (1938),  110-l 1. Morde11
[~ieTte&ZhT&?ChTift  d. Nuturforschenden  Ces. in .?%+ich, 85 (1940),  47-501 has shown
that the result may be sharpened a little.  See also Davenport, Journal London
Math. Soc. 21 (1946),  28-34.

3 24.10. Minkowski [GesammelteAbhandlungen  (Leipzig, 1911),  i. 265,270, 2771
first conjectured  the n-dimensional generalizations of Theorems 458 and 460 and
proved the latter for the n-dimensional sphere [~OC.  cit. ii. 951. The first proof
of the general theorems was  given by Hlawka [Math. ZeitschTift,  49 (1944),  285-
3121.  Our proof is due to Rogers [Ann&  of Math. 48 (1947),  994-1002  and
Nature  159 (1947),  104-51.  See also Cassels,  Broc. Cambridge Phil.  Soc. 49 (1953),
165-6, for a simple proof of Theorem 460 and Rogers, Proc.  London Math. Soc. (3)
6 (1956),  305-20, and Schmidt; Monatsh. Math. 60 (1956),  l-10 and 110-13, for
improvements of Hlawka’s results.
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INDEX OF SPECIAL SYMBOLS

THE references  give  the section and page where the definition of the
symbol in question is to be found. We include  a11 symbols which occur
frequently in standard senses,  but not symbols which, like X(m,n) in
$5.6, are used only in particular sections.

Symbols in the list are sometimes also  used temporarily for other
purposes, as is y in 8 3.11 and elsewhere.

General analytical symbols

0, 0, -,<9=,  If], A (unspecified 0 1.6
constant)

mi+,  Y),  max@, Y) 5 5.1

e(7)  = @ni+ 5 5.6
[xl 6 6.11

b-3,  2 $ 11.3

[ a,,  a,,..., a,] (continued fraction) § 10.1
p,,  qn (convergents) Q 10.2
4 $5 10.5, 10.9

CIil $8  10.7, 10.9

P- 7

p. 48
p. 54

p. 74
p. 156

p. 129
p. 130
pp. 133, 139
pp. 137, 140

Symbols of divisibility, congruence, etc.

bla, b,j’a $1.1  p.1
(a, b),  (a, b,...,  k) 9 2.9 p. 20
{a, b) 6 5.1 p. 48
x E a (modm), x $ a (modm) 0 5.2 p. 49

f(x)  = g(x)  Wdm) $ 7.2 p. 82
g(x)  If(4 (modm) $ 7 .3 p. 83

2:  (modm), i (modm) 5 7 .8 p. 89

41) $ 12.2 p. 178
W 5 12.2 p. 179
k(p) 5 12.2 p. 179
W) $ 14.1 p. 204
BI%Bx%~= /3 (mody) [in k(i) and other fields]

$4.12.6  (p. 182),  12.9 (p. NS), 14.4 (p. 208),  15.2 (p. 21!,)
E (unity) $9  12.4 (p. 181),  12.6 (p. 182),  14.4 (p. 208)
A’or (norm) $5  12.6 (p. 182),  12.9 (p. 187),  14.4 (p. 208)
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pftP)f  $p”’ $ 5.1 p. 48 (f.n.)

aRp, aNp, 0 f
P

5 6.5 pp. 67-8

Special numbers and functions
44 $ 1 . 5 p. 6
PPn 9 1 . 5 p. 6
J?I (Fermat  number) 5 2.4 p. 14
NI,  (Mersenne number) $ 2.5 p. 16
5, (Farey series) 9 3.1
y (Euler’s constant) $34.2,  18.2 pp.3g  (f.n.), 264 (f.n.)
4(m) 3 5.5 p. 52
c,(n)

; Y663
p. 55

An) p. 234
d(n), s(n),  u(n) $ 16.7 p. 238
f-(n),  4(n), G(n) 8 16.9 pp. 240-l
x(n) 5 16.9 p. 240
5(s) 6 17.2 p. 245
Mn) 5 17.7 p. 253
p(n) $ 19.2 p. 273
d-)3  (w4 $ 20.1 p. 298
v(k) 5 21.7 p. 325
P(k>  ai) 3 21.9 pp. 328-9
w4,  vw) $ 22.1 p. 340
U(x) 5 22.1 p. 340
4nL W) $ 22.10 p. 354

Words
We add references  to the definitions of a small number of words and

phrases which a reader may  find difficulty in tracing because they do
not occur in the headings of sections.

standard form of n 5 1.2 p. 2
of the same  order of magnitude $ 1.6 p. 7
asymptotically equivalent, asymptotic to 5 1.6 p, 8
almost a11 (integers) 3 1.6 p. 8
almost a11 (real numbers) $ 9.10 p. 122
quadratfrei 3 2.6 p. 16
highest common divisor 3 2.9 p. 20
unimodular transformation $ 3.6 p. 28



418 INDEX OF SPECIAL SYMBOLS

least common multiple
coprime
multiplicative function
primitive root of unity
a belongs to d (mod m)
primitive root of m
minimal residue (mod m)
Euclidean number
Euclidean construction
algebraic field
simple field
Euclidean field
linear independence of numbers

3 5 .1

ii::

3 5 .6
5 6 .8

ri 6.8
5 6.11
$ 11.5
5 11.5
$ 14.1
Q 14.7
Q 14.7

5 23.4

p. 4 8
p. 4 8
p. 5 3

p. 5 5
p. 71

p. 71
p. 7 3
p. 159
p. 159
p. 2 0 4
p. 2 1 2
p. 2 1 2
p. 3 7 9
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Ahrens, 128.
Andersen, 243.

- Apostol, 243
Atkin, 289, 295.
Atkinson, 272.
Austin, 22,

---Bachet,  115-17, 202, 315.
- Bachmann, 81, 106, 153,

189, 202, 216, 243, 272,
295, 388.

Baer, 335.
Bah,  Rouas. 2 2 .

Bang, 373.
Bernes, 217.
Bastion, 338.

-Bateman,  2 2 .
Bauer, 98, 99, 101, 103,

104, 106.
Beeger,  81.
Berg,  217.

-Bernoulli,  90, 91, 202, 245.
--Bernstein,  168, 177.
---Bertrand, 343, 373.
-Binet,  199.

BGcher,  397.
Bochner, 189, 232.
Bohl, 393.

- Bohr, 22, 259, 388, 393.
.~  Borel, 128, 168, 177.

Boulyguine, 316.
Brilke, 128.

_ Bromwich, 259.
Brun, 296.

- Cantor, 124, 160, 176.
-- Carmiohael, 11.
- Cessels,  128, 412, 413.
- Cauchy,  36, 168.

Champernowne, 128.
Cherves, 153.
Chatland, 217.
Chen, 337.
Cherwell  (see Lindemann,

F. A.), 272, 374.
Chowla, 106.
Chrystal, 153.
Cipolla, 81.

- Clausen, 93.
Copeland, 128.

- van der Corput,  22, 272,
374.

- Coxeter, 22.

Darling, 295.
Darlington, 106.
Davenport,  vii,  22, 217,

335, 336, 411-13.
Dedekind, 377.
Democritus, 42.
Dickson,  vii, 11, 22, 36, 80,

81, 106, 128, 153, 201-3,
217, 243, 295, 315, 316,
335, 337-9, 373, 412.

Diophantus, 201, 202.
Dirichlet, 13, 18, 62, 93,

113, 156, 157, 169, 176,
244, 245, 248, 251, 257,
259, 272, 375.

Duparc,  81.
Durfee, 281.
Dyson, 176, 177, 289, 295,

296, 413.

Eisenstein, 62, 106, 189.
Enneper, 296.
Eratosthenes, 3.
Erchinger, 62.
ErdBs,  22, 128, 373, 374.
Errera, 374.
Escott,  338.
Estermsnn,  22, 316, 336,

386, 393.
Euclid,  3, 4, llS14, 16, 18,

21, 40, 43, 44, 58, 134,
136, 159, 176, 179-82,
185, 187, 212-17, 225,
231%2,239,240,307,340.

Eudoxus, 40.
Euler, 14, 16, 22, 39,52, 62,

63, 65, 80, 81, 90, 163,
199, 201-3,  219, 243,
246, 259, 264, 274, 277,
280, 284, 285, 287, 289,
295, 315, 332, 338, 347,
351, 373.

Ferey,  23, 29, 30, 36, 37,
268.

Fauquembergue, 339.
Fermat, 6, l4, 15, 18, 19,

22. 58. 62. 63. 66, 71-73.
78; 80, 81, 85-87, 105;
190-3,  202, 219, 222,
231, 299, 300, 332, 338.

Ferrar, 397.
Ferrier, 16, 22.

Fibonacci, 148, 150, 153,
223.

Fine, 295.
Fleck, 338.
Franklin, 286, 295.

Gauss, 10, 14, 39, 47, 54,
58,  62,  63,  73-76,  81,
106, 178, 179, 182, 185,
189, 243, 272, 295, 303,
316, 400, 412.

Gegenbauer, 272.
Gelfond,  47, 176, 177.
Gérardin, 203, 339.
Gillies, 22.
Gleisher, 106, 316, 373.
Gloden, 338.
Goldbach, 19, 22.
Goldberg, 81.
Greco, 301, 315.
Grandjot, 62.
Gronwall, 272.
Grunert, 128.
Gupte,  289, 295.
Gwyther, 295.

Hadamard, 11, 374.
Hajos,  37, 412.
Hall, 373.
Hardy, 106, 159, 168, 259,

272, 289, 296, 316, 335,
336, 338. 373, 374, 393.

H a r o s ,  36..
Hasse, 22.
Hausdorff, 128.
Heaslet, 316.
Heath, 42, 43, 47, 201.
Hecke, 22, 93, 159.
Heilbronn, vii, 212, 213,

217, 336, 413.
Hermite, 47, 177, 315, 412.
Hilbert,  177, 298, 315, 335,

336.
Hlawka, 413.
Hobson, 128, 176.
Holder,  243.
Hua, 336.
Hunter, 338.
Hurwitz,  Adolf ,  37,  81,

177, 203, 315, 316, 338,
412.

Hurwitz,  Alexander,  16,
22.
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Ingham, 11, 22, 232, 259,
373.

Jacobi,  189, 243, 259, 282,
283, 285, 289, 295, 315,
316.

Jacobstal, 106.
James, 22, 335, 336.
Jensen, 62.
Jessen, 393.

Kalmar, 373.
Kanold, 243.
Kempner, 335, 338.
Khintchine, 177.
Kloosterman,  56, 62.
Koksma, 128,  177,  393,

411, 412.
Kolberg, 295.
Konig,  128, 378, 393.
Korkine, 412.
Kraitchik, 11, 22.
Krecmar, 289, 295.
Kronecker, 62, 375-8, 382-

4, 386, 388, 390, 392,
393.

Kiihnel, 243.
Kulik, 11.
Kummer,  202.

Lagrange, 87, 93, 98, 153,
197, 302, 315.

Lambert, 47, 257.
Landau, vii, 11, 22, 37, 62,

81, 177, 201, 202, 232,
243, 259, 272, 316, 335,
336, 373, 374, 412, 413.

Lander, 339.
Landry, 15.
Lebesgue, 128.
Leech,  203, 339, 374.
Legendre, 63, 68, 80, 81,

202, 315, 316, 320.
Lehmer, D. H., 11, 16, 22,

81, 148, 153, 202, 213,
217, 231, 289, 295, 374.

Lehmer, D. N., 10, 11, 373.
Lehmer, E., 202, 374.
Lehner, 289, 295.
Leibniz, 81.
Létac,  338.
Lettenmeyer, 384,386,393.
Leudesdorf, 101, 106.
Lindemann, F. A. (see

Cherwell), 22.
Lindemann, F., 177.
Linfoot, 213, 217.
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Linnik, 335.
Liouville, 161, 176, 316,

338.
Lipschitz, 316.
Littlewood, 11, 22, 335,

336, 338, 374, 393.
Luces,  11, 16, 22, 81, 148,

223, 225, 231, 232.

Macbeath, 412.
Maclaurin, 90.
IlacMahon,  278, 286, 287,

289, 295.
Wahler,  339, 413.
Maillet, 338.
Mapes, 11.
Markoff,  412.
Mathews, 62.
Mersenne,  14-16, 18,  80,

148, 223, 224, 240.
Wertens,  272, 351, 373.
Miller, 16, 22, 81, 295.
Mills, 373.
Milne,  v.
Minkowski,  23, 31, 32, 33,

37,394,402,407,411-13.
Mobius, 234, 236, 243, 251,

252, 360.
Moessner ,  339 .
Mordell,  33, 37, 202, 203,

295, 316, 327, 338, 339,
394, 412, 413.

Morehead, 15.
Morse ,  243 .
Moser,  373.

Papier,  8.
iJett0,  295.
yon  Neumann, 128.
Yevanlinna,  374.
Newman, 231, 287, 295.
Newton, 328.
Yicol, 202.
Yiven,  47, 128, 337.
Nogu&3,  202.
Yorrie, 339.

Oppenheim, 2 17.

Palamà, 338.
Parkin, 339.
Patterson, 339.
Pearson, 81.
Pell, 217.
Perron, vii, 153, 177.
Pervusin, 16.
Pillai, 337.

Plato, 42, 43.
mn der Pol, 243.
1e Polignac, 373.
Polya, 14, 22, 37, 128, 243,

259, 272, 374.
Ponting, v.
Potter,  vii.
?rouhet, 328, 338.
Pythagoras, 39, 40, 42, 43,

47, 201.

Rademacher, 47, 289.
Rado, vii, 93, 412.
Ramanujen, 55, 56, 62,

201, 237, 243, 256, 259,
265, 272, 287, 289, 290,
291, 295, 296, 316, 373.

Rama Rao, 93, 106.
Reid, 217.
Remak, 413.
Richmond, 62, 202, 327,

338.
Riemann, 245, 259.
Riesel,  16, 22.
Riesz,  259.
Robinson, 16, 22, 81.
Rogers, 290, 291, 296, 413.
Rosser, 202.
Roth, 176.
Rubugunday, 337.
Ryley, 202.

Wtoun,  315.
Jestry,  339.
gchmidt,  413.
Schneider, 177.
3chur,  291, 296, 338.
Gelhoff,  16.
Segre,  203.
Jelberg,  A., 296, 359, 360,

373, 374.
gelberg,  S., 374.
Selfridge,  16, 22, 81, 202.
Shah,  374.
3iege1,  176, 411, 412.
Sierpifiski,  393.
Skolem, 295.
Smith, 316.
Sommer, 216.
Staeckel, 374.
Stark, 213, 217.
van Staudt, 90, 91, 93.
Stemmler, 337.
Subba Rao, 339.
Sudler, 296.
Sun-Tsu, 106.



Swinnerton-Dyer, 203, 217,
289, 295, 334, 339.

Szeg6,  22, 128, 243, 259,
272.

Szücs, 378, 393.

Tan-y, 328, 338.
Taylor, 171.
Tchebotaref, 405, 413.
Tchebychef, 9, 11,373, 393.
Theodorus, 42, 43.
Thue, 176.
Titchmarah,  259, 272.
Toeplitz, 47.
Torelli, 373.
Turan,  373.

Uspensky, 316. I
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de la Vallée-Poussin, 11,
374.

Vandiver, 202.
Vieta,  203, 339.
Vinogradov, 22, 336, 337.
Voronoi, 272.

Ward, 22.
waring,  81, 93, 297, 315,

317,-325,  335-8.
Watson, G. L., 335.
Watson; G. N., 289, 291,

295, 351, 396.
Weber, 412.
Wellstéin, 412.
Western, 15, 231, 335.
Weyl, 393.
Wheeler,  16, 22, 81.
Whitehead, 81, 295.

1 Whftford,  217.
1 Whlttaker,  351, 396.
~ Wieferich, 202, 335, 338.

Wigert, 272.
Wilson, B. M., 272.
Wilson, J., 68, 81, 86-88,

93, 103, 105, 106.
Wolstenholme, 88-90, 93,

101, 103, 105.
Wright, 81, 106, 338, 373,

374.
Wylie, vii, 106, 177.

Young, G. C., 128.
Young, W. H., 128.

Zermelo, 22, 128.
Zeuthen, 43.
Zolotareff, 412.
Zuckerman,  128, 243.




